Incrementally extensible folded hypercube graphs

Hung-Yi Chang, Rong-Jaye Chen
{"title":"Incrementally extensible folded hypercube graphs","authors":"Hung-Yi Chang, Rong-Jaye Chen","doi":"10.1109/ICPADS.1998.741133","DOIUrl":null,"url":null,"abstract":"In this paper we propose the incrementally extensible folded hypercube (IEFH) graph as a new class of interconnection networks for an arbitrary number of nodes. We show that this system is optimal fault tolerant and almost regular (i.e., the difference between the maximum and the minimum degree of nodes is at most one.). The diameter of this topology is half that of the incomplete hypercube (IH), the supercube, or the IEH graph. We also devise a simple routing algorithm for the IEFH graph. Further we embed cycles and complete binary trees into this graph optimally.","PeriodicalId":226947,"journal":{"name":"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.1998.741133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we propose the incrementally extensible folded hypercube (IEFH) graph as a new class of interconnection networks for an arbitrary number of nodes. We show that this system is optimal fault tolerant and almost regular (i.e., the difference between the maximum and the minimum degree of nodes is at most one.). The diameter of this topology is half that of the incomplete hypercube (IH), the supercube, or the IEH graph. We also devise a simple routing algorithm for the IEFH graph. Further we embed cycles and complete binary trees into this graph optimally.
增量可扩展折叠超立方图
本文提出了增量可扩展折叠超立方体(IEFH)图作为一类具有任意数目节点的互连网络。结果表明,该系统具有最优容错性和几乎正则性(即节点最大度与最小度之差不大于1)。该拓扑的直径是不完全超立方体(IH)、超立方体或IEH图的一半。我们还为IEFH图设计了一个简单的路由算法。进一步将循环和完全二叉树最优地嵌入到图中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信