{"title":"Maximum power point tracking of a wind turbine driven by synchronous generator connected to an isolated load using genetic algorithm","authors":"M. Lasheen, F. Bendary, M. Sharaf, H. El-Zoghby","doi":"10.1109/SASG.2014.7274278","DOIUrl":null,"url":null,"abstract":"Wind turbine generation is rapidly becoming the preferred renewable source of electric energy. The amount of energy captured from a wind energy conversion system (WECS) depends not only on the prevailing wind at the site, but also on the control strategy used for the WECS. Modeling, control and simulation of a wind turbine conversion system connected to an isolated load are proposed. The wind turbine being considered a variable speed turbine connected to a gear box to move a three phase wound rotor synchronous generator. The variable frequency energy produced by the generator is converted to the 50 Hz power system energy by a full power AC/DC/AC electronic converter. The maximum output power at every wind speed is achieved by selecting a certain inverter modulation index using proportional-integral controller which uses DC link power as feedback signal. The controller gains (Kp and Ki) are optimized using the Genetic Algorithm.","PeriodicalId":395633,"journal":{"name":"2014 Saudi Arabia Smart Grid Conference (SASG)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Saudi Arabia Smart Grid Conference (SASG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASG.2014.7274278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Wind turbine generation is rapidly becoming the preferred renewable source of electric energy. The amount of energy captured from a wind energy conversion system (WECS) depends not only on the prevailing wind at the site, but also on the control strategy used for the WECS. Modeling, control and simulation of a wind turbine conversion system connected to an isolated load are proposed. The wind turbine being considered a variable speed turbine connected to a gear box to move a three phase wound rotor synchronous generator. The variable frequency energy produced by the generator is converted to the 50 Hz power system energy by a full power AC/DC/AC electronic converter. The maximum output power at every wind speed is achieved by selecting a certain inverter modulation index using proportional-integral controller which uses DC link power as feedback signal. The controller gains (Kp and Ki) are optimized using the Genetic Algorithm.