Subrata Batabyal, Sanghoon Kim, Michaela Carlson, Houssam Al-Saad, J. Gallego, A. Dibas, S. Mohanty
{"title":"Neuroprotection by optical delivery of therapeutic gene into retina","authors":"Subrata Batabyal, Sanghoon Kim, Michaela Carlson, Houssam Al-Saad, J. Gallego, A. Dibas, S. Mohanty","doi":"10.1117/12.2586104","DOIUrl":null,"url":null,"abstract":"We hypothesized that PEDF gene transduction in retina can provide single-dose treatment to prevent ganglion cell damage. Here, we present OCT guided ultrafast laser based non-viral targeted delivery PEDF-encoding genes to retina for neuroprotection. The ultrafast laser gene delivery showed layer-specific reliable expression of PEDF gene in retina without any detectable damage. Monitoring of IOP and electroretinogram after ultrafast laser transfection showed no adverse changes. The ultrafast laser transfection of large PEDF genes in retina exhibited significant therapeutic benefit in an injury model. Absence of any immune response in retina subsequent to ultrafast-laser transfection provides unique opportunity for repeated dosing.","PeriodicalId":189801,"journal":{"name":"Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2586104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We hypothesized that PEDF gene transduction in retina can provide single-dose treatment to prevent ganglion cell damage. Here, we present OCT guided ultrafast laser based non-viral targeted delivery PEDF-encoding genes to retina for neuroprotection. The ultrafast laser gene delivery showed layer-specific reliable expression of PEDF gene in retina without any detectable damage. Monitoring of IOP and electroretinogram after ultrafast laser transfection showed no adverse changes. The ultrafast laser transfection of large PEDF genes in retina exhibited significant therapeutic benefit in an injury model. Absence of any immune response in retina subsequent to ultrafast-laser transfection provides unique opportunity for repeated dosing.