Modelling an OPC UA client application for predictive maintenance support

L. Chiorean, M. Vaida, H. Hedesiu
{"title":"Modelling an OPC UA client application for predictive maintenance support","authors":"L. Chiorean, M. Vaida, H. Hedesiu","doi":"10.1109/ISETC50328.2020.9301058","DOIUrl":null,"url":null,"abstract":"Predictive maintenance is a very important task for each industrial plant. The concept of Industry 4.0 can ensure this service, offering a clever combination of many technologies. This paper presents a method for deploying a software application that provides the maintenance personnel with a useful tool, allowing them to follow the parameters of the process and to prevent its failure. The application has a client-server structure and uses the open platform communications unified architecture (OPC UA) standard and unified architecture transport control protocol (UA TCP) for data communication. The application developed using the proposed method is meant to be a predictive maintenance tool for the blower station of a wastewater treatment plant, so that the maintenance personnel have the necessary data as system health indicators. The maintenance client software shows the personnel the current functional state of the process by synoptic screens. When the maintenance procedures require it, different process states or process parameter values can be accessed from a dedicated Supervisory Control and Data Acquisition (SCADA) database and provide important information to the maintenance personnel (MP).","PeriodicalId":165650,"journal":{"name":"2020 International Symposium on Electronics and Telecommunications (ISETC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Electronics and Telecommunications (ISETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISETC50328.2020.9301058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Predictive maintenance is a very important task for each industrial plant. The concept of Industry 4.0 can ensure this service, offering a clever combination of many technologies. This paper presents a method for deploying a software application that provides the maintenance personnel with a useful tool, allowing them to follow the parameters of the process and to prevent its failure. The application has a client-server structure and uses the open platform communications unified architecture (OPC UA) standard and unified architecture transport control protocol (UA TCP) for data communication. The application developed using the proposed method is meant to be a predictive maintenance tool for the blower station of a wastewater treatment plant, so that the maintenance personnel have the necessary data as system health indicators. The maintenance client software shows the personnel the current functional state of the process by synoptic screens. When the maintenance procedures require it, different process states or process parameter values can be accessed from a dedicated Supervisory Control and Data Acquisition (SCADA) database and provide important information to the maintenance personnel (MP).
为预测性维护支持建模OPC UA客户端应用程序
预测性维护是每个工业装置的重要任务。工业4.0的概念可以确保这种服务,提供许多技术的巧妙组合。本文提出了一种部署软件应用程序的方法,该方法为维护人员提供了一个有用的工具,使他们能够跟踪过程的参数并防止其失败。该应用程序采用客户端-服务器结构,采用开放平台通信统一架构(OPC UA)标准和统一架构传输控制协议(UA TCP)进行数据通信。利用所提出的方法开发的应用程序旨在成为污水处理厂鼓风机站的预测性维护工具,使维护人员有必要的数据作为系统健康指标。维护客户端软件通过概要屏幕向人员显示工艺的当前功能状态。当维护程序需要时,可以从专用的监控和数据采集(SCADA)数据库访问不同的过程状态或过程参数值,并向维护人员(MP)提供重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信