Simple Case of Fractional Sturm-Liouville Problem with Homogeneous von Neumann Boundary Conditions

M. Klimek
{"title":"Simple Case of Fractional Sturm-Liouville Problem with Homogeneous von Neumann Boundary Conditions","authors":"M. Klimek","doi":"10.1109/MMAR.2018.8486100","DOIUrl":null,"url":null,"abstract":"We study a variant of fractional Sturm-Liouvile eigenvalue problem with homogeneous von Neumann boundary conditions and prove that its spectrum is purely discrete. The differential fractional eigenvalue problem is converted to the integral one determined by the compact, self-adjoint Hilbert-Schmidt integral operator. Both eigenvalue problems, differential and integral one, are equivalent on the respective subspace of continuous functions. The eigenfunctions are continuous and form an orthogonal basis in the respective Hilbert space.","PeriodicalId":201658,"journal":{"name":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2018.8486100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study a variant of fractional Sturm-Liouvile eigenvalue problem with homogeneous von Neumann boundary conditions and prove that its spectrum is purely discrete. The differential fractional eigenvalue problem is converted to the integral one determined by the compact, self-adjoint Hilbert-Schmidt integral operator. Both eigenvalue problems, differential and integral one, are equivalent on the respective subspace of continuous functions. The eigenfunctions are continuous and form an orthogonal basis in the respective Hilbert space.
具有齐次von Neumann边界条件的分数阶Sturm-Liouville问题的简单情况
研究了一类具有齐次von Neumann边界条件的分数阶Sturm-Liouvile特征值问题,并证明了其谱是纯离散的。微分分数特征值问题被转换成由紧的,自伴随的Hilbert-Schmidt积分算子决定的积分问题。微分特征值问题和积分特征值问题在连续函数各自的子空间上是等价的。特征函数是连续的,并在各自的希尔伯特空间中形成正交基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信