Optimal control and inverse optimal control by distribution matching

O. Arenz, Hany Abdulsamad, G. Neumann
{"title":"Optimal control and inverse optimal control by distribution matching","authors":"O. Arenz, Hany Abdulsamad, G. Neumann","doi":"10.1109/IROS.2016.7759596","DOIUrl":null,"url":null,"abstract":"Optimal control is a powerful approach to achieve optimal behavior. However, it typically requires a manual specification of a cost function which often contains several objectives, such as reaching goal positions at different time steps or energy efficiency. Manually trading-off these objectives is often difficult and requires a high engineering effort. In this paper, we present a new approach to specify optimal behavior. We directly specify the desired behavior by a distribution over future states or features of the states. For example, the experimenter could choose to reach certain mean positions with given accuracy/variance at specified time steps. Our approach also unifies optimal control and inverse optimal control in one framework. Given a desired state distribution, we estimate a cost function such that the optimal controller matches the desired distribution. If the desired distribution is estimated from expert demonstrations, our approach performs inverse optimal control. We evaluate our approach on several optimal and inverse optimal control tasks on non-linear systems using incremental linearizations similar to differential dynamic programming approaches.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Optimal control is a powerful approach to achieve optimal behavior. However, it typically requires a manual specification of a cost function which often contains several objectives, such as reaching goal positions at different time steps or energy efficiency. Manually trading-off these objectives is often difficult and requires a high engineering effort. In this paper, we present a new approach to specify optimal behavior. We directly specify the desired behavior by a distribution over future states or features of the states. For example, the experimenter could choose to reach certain mean positions with given accuracy/variance at specified time steps. Our approach also unifies optimal control and inverse optimal control in one framework. Given a desired state distribution, we estimate a cost function such that the optimal controller matches the desired distribution. If the desired distribution is estimated from expert demonstrations, our approach performs inverse optimal control. We evaluate our approach on several optimal and inverse optimal control tasks on non-linear systems using incremental linearizations similar to differential dynamic programming approaches.
基于分布匹配的最优控制和逆最优控制
最优控制是实现最优行为的有力方法。然而,它通常需要一个成本函数的手动规范,其中通常包含几个目标,例如在不同的时间步长或能源效率上达到目标位置。手动地权衡这些目标通常是困难的,并且需要很高的工程努力。在本文中,我们提出了一种新的方法来指定最优行为。我们通过未来状态或状态特征的分布直接指定期望的行为。例如,实验者可以选择在指定的时间步长以给定的精度/方差达到特定的平均位置。该方法还将最优控制和逆最优控制统一在一个框架中。给定一个期望状态分布,我们估计一个代价函数,使最优控制器与期望分布匹配。如果期望的分布是由专家演示估计的,我们的方法执行逆最优控制。我们使用类似于微分动态规划方法的增量线性化方法对非线性系统的几个最优和逆最优控制任务进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信