Yeqiang Qian, Ming Yang, Chunxiang Wang, Bing Wang
{"title":"Self-adapting part-based pedestrian detection using a fish-eye camera","authors":"Yeqiang Qian, Ming Yang, Chunxiang Wang, Bing Wang","doi":"10.1109/IVS.2017.7995695","DOIUrl":null,"url":null,"abstract":"Nowadays, fish-eye cameras play an increasingly important role in intelligent vehicles because of its wide field of view. Using fish-eye camera, pedestrians around the vehicles could be monitored expediently, but the problem of pedestrian distortion has always existed. This paper creates a new warping pedestrian benchmark using imaging principle of the fish-eye camera based on ETH pedestrian benchmark. With this practical benchmark, warping pedestrians are trained differently according to the position in fish-eye images. A self-adapting part-based algorithm is proposed to detect pedestrian with different degrees of deformation. Moreover, GPU is used to accelerate the whole algorithm to guarantee the real-time performance. Experiments show that the algorithm has competitive accuracy.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Nowadays, fish-eye cameras play an increasingly important role in intelligent vehicles because of its wide field of view. Using fish-eye camera, pedestrians around the vehicles could be monitored expediently, but the problem of pedestrian distortion has always existed. This paper creates a new warping pedestrian benchmark using imaging principle of the fish-eye camera based on ETH pedestrian benchmark. With this practical benchmark, warping pedestrians are trained differently according to the position in fish-eye images. A self-adapting part-based algorithm is proposed to detect pedestrian with different degrees of deformation. Moreover, GPU is used to accelerate the whole algorithm to guarantee the real-time performance. Experiments show that the algorithm has competitive accuracy.