Hello & Goodbye: Conversation Boundary Identification Using Text Classification

J. Dunne, David Malone
{"title":"Hello & Goodbye: Conversation Boundary Identification Using Text Classification","authors":"J. Dunne, David Malone","doi":"10.1109/ISSC.2018.8585376","DOIUrl":null,"url":null,"abstract":"One of the main challenges in discourse analysis is the process of segmenting text into meaningful topic segments. While this problem has been studied over the past thirty years, previous topic segmentation studies ignore crucial elements of a conversation: an opening and closing remark. Our motivation to revisit this problem space is the rise of instant message usage. We consider the problem of topic segmentation as a machine learning classification one. Using both enterprise and open source datasets, we address the question as to whether a machine learning algorithm can be trained to identify salutations and valedictions within multi-party real-time chat conversations. Our results show that both Naïve Bayes (NB) and Support Vector Machine (SVM) algorithms provide a reasonable degree of precision(mean F1 score: 0.58).","PeriodicalId":174854,"journal":{"name":"2018 29th Irish Signals and Systems Conference (ISSC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 29th Irish Signals and Systems Conference (ISSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSC.2018.8585376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the main challenges in discourse analysis is the process of segmenting text into meaningful topic segments. While this problem has been studied over the past thirty years, previous topic segmentation studies ignore crucial elements of a conversation: an opening and closing remark. Our motivation to revisit this problem space is the rise of instant message usage. We consider the problem of topic segmentation as a machine learning classification one. Using both enterprise and open source datasets, we address the question as to whether a machine learning algorithm can be trained to identify salutations and valedictions within multi-party real-time chat conversations. Our results show that both Naïve Bayes (NB) and Support Vector Machine (SVM) algorithms provide a reasonable degree of precision(mean F1 score: 0.58).
你好与再见:使用文本分类的对话边界识别
语篇分析的主要挑战之一是将文本分割成有意义的主题片段。虽然这个问题已经研究了三十年,但之前的话题分割研究忽略了对话的关键要素:开场白和结束语。我们重新审视这个问题空间的动机是即时消息使用的增加。我们认为主题分割问题是一个机器学习分类问题。使用企业和开源数据集,我们解决了机器学习算法是否可以被训练来识别多方实时聊天对话中的致敬和告别的问题。我们的研究结果表明Naïve贝叶斯(NB)和支持向量机(SVM)算法都提供了合理的精度(平均F1分数:0.58)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信