Formal Verification for Safe Deep Reinforcement Learning in Trajectory Generation

Davide Corsi, Enrico Marchesini, A. Farinelli, P. Fiorini
{"title":"Formal Verification for Safe Deep Reinforcement Learning in Trajectory Generation","authors":"Davide Corsi, Enrico Marchesini, A. Farinelli, P. Fiorini","doi":"10.1109/IRC.2020.00062","DOIUrl":null,"url":null,"abstract":"We consider the problem of Safe Deep Reinforcement Learning (DRL) using formal verification in a trajectory generation task. In more detail, we propose an approach to verify whether a trained model can generate trajectories that are guaranteed to meet safety properties (e.g., operate in a limited work-space). We show that our verification approach based on interval analysis, provably guarantees whether a model meets pre-specified safety properties and it returns the input values that cause a violation of such properties. Furthermore, we show that an optimized DRL approach (i.e., using scaling discount factor and a mixed exploration policy based on a directional controller) can reach the target with millimeter precision while reducing the set of inputs that cause safety violations. Crucially, in our experiments, the number of undesirable inputs is so low that they can be directly removed with a simple controller.","PeriodicalId":232817,"journal":{"name":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2020.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We consider the problem of Safe Deep Reinforcement Learning (DRL) using formal verification in a trajectory generation task. In more detail, we propose an approach to verify whether a trained model can generate trajectories that are guaranteed to meet safety properties (e.g., operate in a limited work-space). We show that our verification approach based on interval analysis, provably guarantees whether a model meets pre-specified safety properties and it returns the input values that cause a violation of such properties. Furthermore, we show that an optimized DRL approach (i.e., using scaling discount factor and a mixed exploration policy based on a directional controller) can reach the target with millimeter precision while reducing the set of inputs that cause safety violations. Crucially, in our experiments, the number of undesirable inputs is so low that they can be directly removed with a simple controller.
轨迹生成中安全深度强化学习的形式化验证
我们考虑了在轨迹生成任务中使用形式化验证的安全深度强化学习(DRL)问题。更详细地说,我们提出了一种方法来验证训练模型是否可以生成保证满足安全属性的轨迹(例如,在有限的工作空间中运行)。我们表明,基于区间分析的验证方法可证明地保证模型是否满足预先指定的安全属性,并返回导致违反这些属性的输入值。此外,我们证明了一种优化的DRL方法(即使用缩放折扣因子和基于方向控制器的混合勘探策略)可以达到毫米精度的目标,同时减少导致安全违规的输入集。至关重要的是,在我们的实验中,不良输入的数量非常低,可以用一个简单的控制器直接删除它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信