Optimal disease outbreak decisions using stochastic simulation

M. Ludkovski, Jarad Niemi
{"title":"Optimal disease outbreak decisions using stochastic simulation","authors":"M. Ludkovski, Jarad Niemi","doi":"10.1109/WSC.2011.6148076","DOIUrl":null,"url":null,"abstract":"Management policies for disease outbreaks balance the expected morbidity and mortality costs versus the cost of intervention policies. We present a methodology for dynamic determination of optimal policies in a stochastic compartmental model with parameter uncertainty. Our approach is to first carry out sequential Bayesian estimation of outbreak parameters and then solve the dynamic programming equations. The latter step is simulation-based and relies on regression Monte Carlo techniques. To improve performance we investigate lasso regression and global policy iteration. Comparisons demonstrate the realized cost savings of choosing interventions based on the computed dynamic policy over simpler decision rules.","PeriodicalId":246140,"journal":{"name":"Proceedings of the 2011 Winter Simulation Conference (WSC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2011.6148076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Management policies for disease outbreaks balance the expected morbidity and mortality costs versus the cost of intervention policies. We present a methodology for dynamic determination of optimal policies in a stochastic compartmental model with parameter uncertainty. Our approach is to first carry out sequential Bayesian estimation of outbreak parameters and then solve the dynamic programming equations. The latter step is simulation-based and relies on regression Monte Carlo techniques. To improve performance we investigate lasso regression and global policy iteration. Comparisons demonstrate the realized cost savings of choosing interventions based on the computed dynamic policy over simpler decision rules.
基于随机模拟的最优疾病暴发决策
疾病暴发管理政策在预期发病率和死亡率成本与干预政策成本之间取得平衡。我们提出了一种具有参数不确定性的随机分区模型中动态确定最优策略的方法。我们的方法是首先对爆发参数进行序列贝叶斯估计,然后求解动态规划方程。后一步是基于模拟的,依赖于回归蒙特卡罗技术。为了提高性能,我们研究了套索回归和全局策略迭代。比较表明,基于计算动态策略选择干预措施比基于简单决策规则选择干预措施节省了实际成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信