An Effective Method of Collided Signals Separation for Satellite-based Automatic Identification System

Dan Zhao, Min Huang, Peng Li, Luan Wang, Renhong Xie, Yibin Rui
{"title":"An Effective Method of Collided Signals Separation for Satellite-based Automatic Identification System","authors":"Dan Zhao, Min Huang, Peng Li, Luan Wang, Renhong Xie, Yibin Rui","doi":"10.1109/IMWS-AMP49156.2020.9199722","DOIUrl":null,"url":null,"abstract":"In this paper, an effective method which is developed specially for separating the collided wireless RF signals of satellite-based Automatic Identification System (AIS) is presented. The proposed approach adopts an optimization algorithm, which improves the artificial bee colony (ABC) algorithm by combining the advantages of limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). The separation mathematical model of the collided signals is addressed and the steps of algorithm are given. Simulation results show that the proposed method yields superior performance in terms of convergence speed and solution accuracy.","PeriodicalId":163276,"journal":{"name":"2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-AMP49156.2020.9199722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an effective method which is developed specially for separating the collided wireless RF signals of satellite-based Automatic Identification System (AIS) is presented. The proposed approach adopts an optimization algorithm, which improves the artificial bee colony (ABC) algorithm by combining the advantages of limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). The separation mathematical model of the collided signals is addressed and the steps of algorithm are given. Simulation results show that the proposed method yields superior performance in terms of convergence speed and solution accuracy.
星载自动识别系统中碰撞信号分离的有效方法
本文针对星载自动识别系统中碰撞无线射频信号的分离问题,提出了一种有效的分离方法。该方法采用优化算法,结合有限记忆Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)算法的优点,对人工蜂群(ABC)算法进行了改进。讨论了碰撞信号分离的数学模型,给出了算法步骤。仿真结果表明,该方法在收敛速度和求解精度方面具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信