Mean-square-error reduction for quantized FIR filters

J. Izydorczyk
{"title":"Mean-square-error reduction for quantized FIR filters","authors":"J. Izydorczyk","doi":"10.1109/MELCON.2006.1653040","DOIUrl":null,"url":null,"abstract":"In the article the author discuss fundamental properties of canonic signed digit (CSD) fixed point representation of numbers. Although properties of CSD format are well known from literature, published proofs are tedious and occupy lot of columns of text. Here the problem has been reduced to the problem of combinatorial number. The tool for this reduction is a \"drawer lemma\" - lemma about the distribution of identical objects in drawers or holes. Next there is proposed an algorithm for the computation and quantization of canonic signed digit (CSD) coefficients in a constant-coefficient multiplierless FIR filter. The algorithm is proven to be optimal in the mean square error sense. The algorithm is recurrent and unexpectedly simple, so it can be easily implemented inside any mathematical program as MATLAB or MATHCAD","PeriodicalId":299928,"journal":{"name":"MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2006.1653040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the article the author discuss fundamental properties of canonic signed digit (CSD) fixed point representation of numbers. Although properties of CSD format are well known from literature, published proofs are tedious and occupy lot of columns of text. Here the problem has been reduced to the problem of combinatorial number. The tool for this reduction is a "drawer lemma" - lemma about the distribution of identical objects in drawers or holes. Next there is proposed an algorithm for the computation and quantization of canonic signed digit (CSD) coefficients in a constant-coefficient multiplierless FIR filter. The algorithm is proven to be optimal in the mean square error sense. The algorithm is recurrent and unexpectedly simple, so it can be easily implemented inside any mathematical program as MATLAB or MATHCAD
量化FIR滤波器的均方误差减小
本文讨论了正整数不动点表示的基本性质。虽然CSD格式的特性在文献中是众所周知的,但发表的证明繁琐且占用大量的文本列。在这里,这个问题被简化为组合数问题。这种简化的工具是一个“抽屉引理”——关于相同物体在抽屉或洞中的分布的引理。其次,提出了一种常系数无乘法器FIR滤波器中正则符号数系数的计算和量化算法。该算法在均方误差意义上是最优的。该算法是循环的,而且非常简单,因此可以很容易地在MATLAB或MATHCAD等任何数学程序中实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信