Determining the accuracy in image supervised classification problems

D. Gómez, J. Montero
{"title":"Determining the accuracy in image supervised classification problems","authors":"D. Gómez, J. Montero","doi":"10.2991/eusflat.2011.103","DOIUrl":null,"url":null,"abstract":"A large number of accuracy measures for crisp supervised classification have been developed in supervised image classification literature. Overall accuracy, Kappa index, Kappa location, Kappa histo and user accuracy are some well-known examples. In this work, we will extend and analyze some of these measures in a fuzzy framework to be able to measure the goodness of a given classifier in a supervised fuzzy classification system with fuzzy reference data. In addition with this, the measures here defined also take into account the preferences of the decision maker in order to differentiate some errors that must not be considered equal in the classification process.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

A large number of accuracy measures for crisp supervised classification have been developed in supervised image classification literature. Overall accuracy, Kappa index, Kappa location, Kappa histo and user accuracy are some well-known examples. In this work, we will extend and analyze some of these measures in a fuzzy framework to be able to measure the goodness of a given classifier in a supervised fuzzy classification system with fuzzy reference data. In addition with this, the measures here defined also take into account the preferences of the decision maker in order to differentiate some errors that must not be considered equal in the classification process.
确定图像监督分类问题的准确性
在有监督图像分类的文献中,提出了大量用于清晰监督分类的精度度量。总体精度、Kappa指数、Kappa位置、Kappa历史和用户精度是一些众所周知的例子。在这项工作中,我们将在模糊框架中扩展和分析其中的一些度量,以便能够在具有模糊参考数据的监督模糊分类系统中度量给定分类器的优良性。除此之外,这里定义的度量还考虑了决策者的偏好,以便区分一些在分类过程中不能被认为是相等的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信