Prediction and Analysis of Permanent Magnet Synchronous Motor parameters using Machine Learning Algorithms

R. Savant, A. Kumar, Aditya Ghatak
{"title":"Prediction and Analysis of Permanent Magnet Synchronous Motor parameters using Machine Learning Algorithms","authors":"R. Savant, A. Kumar, Aditya Ghatak","doi":"10.1109/ICAECC50550.2020.9339479","DOIUrl":null,"url":null,"abstract":"The widespread acceptance of PMSM as the motor of choice for electric vehicles, along with various other applications demands the need of stringent monitoring of temperature in order to avoid increased temperatures. Temperature values beyond a specific range can lead to major operational problems in Permanent Magnet Synchronous Motor(PMSM) along with additional maintenance costs. Using r2 values this paper compares the performance of three different Machine Learning Algorithms in the estimation of parameters in a Permanent Magnet Synchronous Motor. Making use of a pre existing test set, the accuracies in predictions by the following models are compared: Support Vector Regressor, Random Forest Regressor and Polynomial Regression. Random Forest Regression shows the highest r2 values(statistical way of knowing variation of dependent variables explained by independent variables for a particular regression model) which proves the accuracy of the model.","PeriodicalId":196343,"journal":{"name":"2020 Third International Conference on Advances in Electronics, Computers and Communications (ICAECC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Third International Conference on Advances in Electronics, Computers and Communications (ICAECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECC50550.2020.9339479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The widespread acceptance of PMSM as the motor of choice for electric vehicles, along with various other applications demands the need of stringent monitoring of temperature in order to avoid increased temperatures. Temperature values beyond a specific range can lead to major operational problems in Permanent Magnet Synchronous Motor(PMSM) along with additional maintenance costs. Using r2 values this paper compares the performance of three different Machine Learning Algorithms in the estimation of parameters in a Permanent Magnet Synchronous Motor. Making use of a pre existing test set, the accuracies in predictions by the following models are compared: Support Vector Regressor, Random Forest Regressor and Polynomial Regression. Random Forest Regression shows the highest r2 values(statistical way of knowing variation of dependent variables explained by independent variables for a particular regression model) which proves the accuracy of the model.
基于机器学习算法的永磁同步电机参数预测与分析
PMSM作为电动汽车的首选电机的广泛接受,以及各种其他应用要求严格监测温度,以避免温度升高。超过特定范围的温度值可能导致永磁同步电机(PMSM)的主要运行问题以及额外的维护成本。本文利用r2值比较了三种不同的机器学习算法在永磁同步电机参数估计中的性能。利用预先存在的测试集,比较了以下模型的预测准确性:支持向量回归、随机森林回归和多项式回归。随机森林回归显示出最高的r2值(对于特定回归模型,自变量解释的因变量变化的统计方法),这证明了模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信