Model Predictive Control with Gaussian Process Regression Compensation for Power Management in Fuel Cell Hybrid Electric Buses

Qiuyu Li, Hengzhao Yang
{"title":"Model Predictive Control with Gaussian Process Regression Compensation for Power Management in Fuel Cell Hybrid Electric Buses","authors":"Qiuyu Li, Hengzhao Yang","doi":"10.1109/PEDG56097.2023.10215114","DOIUrl":null,"url":null,"abstract":"Fuel cell hybrid electric buses (FCHEBs) using hydrogen fuel cells (FCs) as the main power source and supercapacitors (SCs) as the energy buffer may be a viable electrified transportation technology. This paper proposes a Model Predictive Control scheme with Gaussian Process Regression Compensation (GPRC-MPC) for power management in FCHEB FC/SC hybrid energy storage systems. To improve the accuracy of the linear MPC model, GPRC-MPC introduces Gaussian process regression to predict and compensate for the load disturbance error and the residual error. Simulation results show that GPRC-MPC performs better in reducing the hydrogen consumption, maintaining the SC SOC level, and alleviating the FC degradation.","PeriodicalId":386920,"journal":{"name":"2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDG56097.2023.10215114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fuel cell hybrid electric buses (FCHEBs) using hydrogen fuel cells (FCs) as the main power source and supercapacitors (SCs) as the energy buffer may be a viable electrified transportation technology. This paper proposes a Model Predictive Control scheme with Gaussian Process Regression Compensation (GPRC-MPC) for power management in FCHEB FC/SC hybrid energy storage systems. To improve the accuracy of the linear MPC model, GPRC-MPC introduces Gaussian process regression to predict and compensate for the load disturbance error and the residual error. Simulation results show that GPRC-MPC performs better in reducing the hydrogen consumption, maintaining the SC SOC level, and alleviating the FC degradation.
基于高斯过程回归补偿的燃料电池混合动力客车动力管理模型预测控制
以氢燃料电池(fc)为主要动力源、超级电容器(SCs)作为能量缓冲的燃料电池混合动力公交车(fcheb)可能是一种可行的电气化交通技术。提出了一种基于高斯过程回归补偿的模型预测控制方案(GPRC-MPC),用于FCHEB FC/SC混合储能系统的电源管理。为了提高线性MPC模型的精度,GPRC-MPC引入高斯过程回归对负载扰动误差和残差进行预测和补偿。仿真结果表明,GPRC-MPC在降低氢耗、维持SC SOC水平和缓解FC降解方面具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信