Features extraction for facial expressions recognition

Anas Abouyahya, S. Fkihi, R. Thami, D. Aboutajdine
{"title":"Features extraction for facial expressions recognition","authors":"Anas Abouyahya, S. Fkihi, R. Thami, D. Aboutajdine","doi":"10.1109/ICMCS.2016.7905642","DOIUrl":null,"url":null,"abstract":"The recognition of an expression seems obvious and easy when classified by the human brain. However, it is clearly difficult for a computer to detect human face, extract all of the components characterizing the facial expression and then determine its classification from a single image. Moreover, based on videos, the process becomes even more complex because it must take simultaneously into account the temporal and spatial information available. Also, It should be noted that facial features have an important fact to developing a robust face representation because it aims to select the best of features and reduce dimensionality of features set by finding a new set which contains most of the face features information. For those reasons, this paper present several features extraction approaches for facial expressions recognition as state-of-the-art review.","PeriodicalId":345854,"journal":{"name":"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCS.2016.7905642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The recognition of an expression seems obvious and easy when classified by the human brain. However, it is clearly difficult for a computer to detect human face, extract all of the components characterizing the facial expression and then determine its classification from a single image. Moreover, based on videos, the process becomes even more complex because it must take simultaneously into account the temporal and spatial information available. Also, It should be noted that facial features have an important fact to developing a robust face representation because it aims to select the best of features and reduce dimensionality of features set by finding a new set which contains most of the face features information. For those reasons, this paper present several features extraction approaches for facial expressions recognition as state-of-the-art review.
面部表情识别的特征提取
当被人脑分类时,对表情的识别似乎是显而易见和容易的。然而,对于计算机来说,检测人脸,提取表征面部表情的所有成分,然后从单个图像中确定其分类显然是困难的。此外,基于录像,这一过程变得更加复杂,因为它必须同时考虑到现有的时间和空间信息。此外,应该注意的是,面部特征对于开发鲁棒人脸表示具有重要意义,因为它旨在通过寻找包含大多数面部特征信息的新集来选择最佳特征并降低特征集的维数。基于这些原因,本文提出了几种用于面部表情识别的特征提取方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信