Digitally-compatible ring oscillator frequency driven tuning of CN-TFT amplifiers: Performance compensation under statistical and morphological variations
Suvadeep Banerjee, M. Gupta, A. Banerjee, Satish Kumar, A. Chatterjee
{"title":"Digitally-compatible ring oscillator frequency driven tuning of CN-TFT amplifiers: Performance compensation under statistical and morphological variations","authors":"Suvadeep Banerjee, M. Gupta, A. Banerjee, Satish Kumar, A. Chatterjee","doi":"10.1109/IMS3TW.2015.7177860","DOIUrl":null,"url":null,"abstract":"Carbon Nanotube network based Thin-Film Transistors (CN-TFTs) are excellent candidates for next generation flexible electronics applications. However CN-TFT circuits suffer from imperfections due to morphological variations of fabricated carbon nanotube geometries that cause wide performance variations in analog amplifiers built from these CN-TFTs. Improved fabrication methods and sophisticated process control techniques are not sufficient for tackling these imperfections. In this paper, a new digitally-compatible tuning method is proposed for CN-TFT based amplifier designs. The amplifier is placed in a ring-oscillator configuration using two additional digital inverters, appropriately modified to allow oscillation of the inverter-inverting amplifier-inverter configuration. The frequency of oscillation is then used to drive a tuning algorithm that recovers the performance of the amplifier under statistical and morphological fabrication process variations. The method is very easy to implement and simulation studies show excellent results.","PeriodicalId":370144,"journal":{"name":"2015 IEEE 20th International Mixed-Signals Testing Workshop (IMSTW)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 20th International Mixed-Signals Testing Workshop (IMSTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMS3TW.2015.7177860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Carbon Nanotube network based Thin-Film Transistors (CN-TFTs) are excellent candidates for next generation flexible electronics applications. However CN-TFT circuits suffer from imperfections due to morphological variations of fabricated carbon nanotube geometries that cause wide performance variations in analog amplifiers built from these CN-TFTs. Improved fabrication methods and sophisticated process control techniques are not sufficient for tackling these imperfections. In this paper, a new digitally-compatible tuning method is proposed for CN-TFT based amplifier designs. The amplifier is placed in a ring-oscillator configuration using two additional digital inverters, appropriately modified to allow oscillation of the inverter-inverting amplifier-inverter configuration. The frequency of oscillation is then used to drive a tuning algorithm that recovers the performance of the amplifier under statistical and morphological fabrication process variations. The method is very easy to implement and simulation studies show excellent results.