Feature Reduction and Classification of Hyperspectral Image Based on Multiple Kernel PCA and Deep Learning

M. Hossain, Md. Ali Hossain
{"title":"Feature Reduction and Classification of Hyperspectral Image Based on Multiple Kernel PCA and Deep Learning","authors":"M. Hossain, Md. Ali Hossain","doi":"10.1109/RAAICON48939.2019.59","DOIUrl":null,"url":null,"abstract":"In recent years, the classification of Hyper Spectral Image (HSI) is a big challenge for its multidimensional property. So it is burning question to reduce the dimension of HSIs. There are several ways to reduce the dimension of hyperspectral images like Principle Component Analysis (PCA), Kernel Principle Component Analysis (KPCA), Kernel Entropy Component Analysis (KECA) and so on. In this paper, we proposed a modified version of KPCA using multiple kernels like Linear, Radial Basis Function (RBF), Cosine, Sigmoid. Then fused their spectral and special properties by doing the classification of the HSIs using Hybrid Spectral Net (HybridSN) Model which is a recently trending modified deep neural network algorithm of Convolutional Neural Network (CNN). Finally, this paper demonstrates experimental results to show the effects and performance on classification of using different kernels of KPCA algorithm with other algorithms such as Non-negative Matrix Factorization(NMF), Independent Component Analysis (ICA) and Singular Value Decomposition(SVD) on well-known hyperspectral dataset.","PeriodicalId":102214,"journal":{"name":"2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAAICON48939.2019.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, the classification of Hyper Spectral Image (HSI) is a big challenge for its multidimensional property. So it is burning question to reduce the dimension of HSIs. There are several ways to reduce the dimension of hyperspectral images like Principle Component Analysis (PCA), Kernel Principle Component Analysis (KPCA), Kernel Entropy Component Analysis (KECA) and so on. In this paper, we proposed a modified version of KPCA using multiple kernels like Linear, Radial Basis Function (RBF), Cosine, Sigmoid. Then fused their spectral and special properties by doing the classification of the HSIs using Hybrid Spectral Net (HybridSN) Model which is a recently trending modified deep neural network algorithm of Convolutional Neural Network (CNN). Finally, this paper demonstrates experimental results to show the effects and performance on classification of using different kernels of KPCA algorithm with other algorithms such as Non-negative Matrix Factorization(NMF), Independent Component Analysis (ICA) and Singular Value Decomposition(SVD) on well-known hyperspectral dataset.
基于多核PCA和深度学习的高光谱图像特征约简与分类
近年来,由于高光谱图像的多维性,对其进行分类是一个很大的挑战。因此,如何降低hsi的维度是一个亟待解决的问题。高光谱图像的降维方法有主成分分析(PCA)、核主成分分析(KPCA)、核熵成分分析(kea)等。在本文中,我们提出了一个改进版本的KPCA使用多核如线性,径向基函数(RBF),余弦,Sigmoid。然后利用混合光谱网络模型(HybridSN)对hsi进行分类,融合了它们的光谱和特殊性质。混合光谱网络模型是卷积神经网络(CNN)的一种最新趋势改进的深度神经网络算法。最后,通过实验验证了不同核数的KPCA算法与非负矩阵分解(NMF)、独立成分分析(ICA)、奇异值分解(SVD)等算法在知名高光谱数据集上的分类效果和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信