{"title":"Feature Reduction and Classification of Hyperspectral Image Based on Multiple Kernel PCA and Deep Learning","authors":"M. Hossain, Md. Ali Hossain","doi":"10.1109/RAAICON48939.2019.59","DOIUrl":null,"url":null,"abstract":"In recent years, the classification of Hyper Spectral Image (HSI) is a big challenge for its multidimensional property. So it is burning question to reduce the dimension of HSIs. There are several ways to reduce the dimension of hyperspectral images like Principle Component Analysis (PCA), Kernel Principle Component Analysis (KPCA), Kernel Entropy Component Analysis (KECA) and so on. In this paper, we proposed a modified version of KPCA using multiple kernels like Linear, Radial Basis Function (RBF), Cosine, Sigmoid. Then fused their spectral and special properties by doing the classification of the HSIs using Hybrid Spectral Net (HybridSN) Model which is a recently trending modified deep neural network algorithm of Convolutional Neural Network (CNN). Finally, this paper demonstrates experimental results to show the effects and performance on classification of using different kernels of KPCA algorithm with other algorithms such as Non-negative Matrix Factorization(NMF), Independent Component Analysis (ICA) and Singular Value Decomposition(SVD) on well-known hyperspectral dataset.","PeriodicalId":102214,"journal":{"name":"2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAAICON48939.2019.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In recent years, the classification of Hyper Spectral Image (HSI) is a big challenge for its multidimensional property. So it is burning question to reduce the dimension of HSIs. There are several ways to reduce the dimension of hyperspectral images like Principle Component Analysis (PCA), Kernel Principle Component Analysis (KPCA), Kernel Entropy Component Analysis (KECA) and so on. In this paper, we proposed a modified version of KPCA using multiple kernels like Linear, Radial Basis Function (RBF), Cosine, Sigmoid. Then fused their spectral and special properties by doing the classification of the HSIs using Hybrid Spectral Net (HybridSN) Model which is a recently trending modified deep neural network algorithm of Convolutional Neural Network (CNN). Finally, this paper demonstrates experimental results to show the effects and performance on classification of using different kernels of KPCA algorithm with other algorithms such as Non-negative Matrix Factorization(NMF), Independent Component Analysis (ICA) and Singular Value Decomposition(SVD) on well-known hyperspectral dataset.