An evaluation of robust cost functions for RGB direct mapping

Alejo Concha, Javier Civera
{"title":"An evaluation of robust cost functions for RGB direct mapping","authors":"Alejo Concha, Javier Civera","doi":"10.1109/ECMR.2015.7324174","DOIUrl":null,"url":null,"abstract":"The so-called direct SLAM methods have shown an impressive performance in estimating a dense 3D reconstruction from RGB sequences in real-time [1], [2], [3]. They are based on the minimization of an error function composed of several terms that account for the photometric consistency of corresponding pixels and the smoothness and the planarity priors on the reconstructed surfaces. In this paper we evaluate several robust error functions that reduce the influence of large individual contributions -that most likely correspond to outliers- to the total error. Our experimental results show that the differences between the robust functions are considerable, the best of them reducing the estimation error up to 25%.","PeriodicalId":142754,"journal":{"name":"2015 European Conference on Mobile Robots (ECMR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2015.7324174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The so-called direct SLAM methods have shown an impressive performance in estimating a dense 3D reconstruction from RGB sequences in real-time [1], [2], [3]. They are based on the minimization of an error function composed of several terms that account for the photometric consistency of corresponding pixels and the smoothness and the planarity priors on the reconstructed surfaces. In this paper we evaluate several robust error functions that reduce the influence of large individual contributions -that most likely correspond to outliers- to the total error. Our experimental results show that the differences between the robust functions are considerable, the best of them reducing the estimation error up to 25%.
RGB直接映射鲁棒代价函数的评价
所谓的直接SLAM方法在实时估计RGB序列的密集三维重建方面表现出令人印象深刻的性能[1],[2],[3]。它们基于误差函数的最小化,该函数由若干项组成,这些项考虑了相应像素的光度一致性以及重建表面的平滑性和平面性先验。在本文中,我们评估了几个鲁棒误差函数,这些函数减少了很大的个体贡献(很可能对应于异常值)对总误差的影响。实验结果表明,这些鲁棒函数之间的差异是相当大的,其中最好的鲁棒函数将估计误差降低了25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信