Comparison of Higher Order Statistical Method for Low Contrast Images

Sourav Maji, N. Rout
{"title":"Comparison of Higher Order Statistical Method for Low Contrast Images","authors":"Sourav Maji, N. Rout","doi":"10.1109/AESPC44649.2018.9033401","DOIUrl":null,"url":null,"abstract":"Contrast enhancement and brightness preservation are widely used in different application of image processing. Histogram equalization (HE) is a common methods used for contrast enhancement as it is easy to implement for any digital images. But this method is not suitable for electronics application because it introduce unnecessary visual artifacts in the output images. To overcome the visual artifacts several segmentation methods are introduced for contrast enhancement. The two segmentation based on image enhancement algorithms, called Root-Mean-Skewness Bi-histogram Equalization (RMSKBHE)[8] and DUO-Histogram Equalization(DUO-HE)[9] gives the general idea or shape of the histogram of images. In this paper both the RMSKBHE and DUO-HE algorithm are proposed for better contrast enhancement of asymmetric input image and to find better contrast enhancement and brightness preserving for output image. The comparison of RMSKBHE and DUO-HE algorithms have been carried out using different quality measurement technique i.e. peak signal to noise ratio (PSNR) and absolute modified mean brightness error (AMMBE). Visual perception and statistical values for the DUO-HE algorithm is found out better than the RMSKBHE algorithm.","PeriodicalId":222759,"journal":{"name":"2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC)","volume":"9 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AESPC44649.2018.9033401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contrast enhancement and brightness preservation are widely used in different application of image processing. Histogram equalization (HE) is a common methods used for contrast enhancement as it is easy to implement for any digital images. But this method is not suitable for electronics application because it introduce unnecessary visual artifacts in the output images. To overcome the visual artifacts several segmentation methods are introduced for contrast enhancement. The two segmentation based on image enhancement algorithms, called Root-Mean-Skewness Bi-histogram Equalization (RMSKBHE)[8] and DUO-Histogram Equalization(DUO-HE)[9] gives the general idea or shape of the histogram of images. In this paper both the RMSKBHE and DUO-HE algorithm are proposed for better contrast enhancement of asymmetric input image and to find better contrast enhancement and brightness preserving for output image. The comparison of RMSKBHE and DUO-HE algorithms have been carried out using different quality measurement technique i.e. peak signal to noise ratio (PSNR) and absolute modified mean brightness error (AMMBE). Visual perception and statistical values for the DUO-HE algorithm is found out better than the RMSKBHE algorithm.
低对比度图像的高阶统计方法比较
对比度增强和亮度保持在图像处理的不同应用中有着广泛的应用。直方图均衡化(HE)是一种常用的对比度增强方法,因为它很容易实现任何数字图像。但由于该方法会在输出图像中引入不必要的视觉伪影,因此不适合电子应用。为了克服视觉伪影,引入了几种分割方法来增强对比度。基于图像增强的两种分割算法,分别是均方根偏度双直方图均衡化(RMSKBHE)[8]和双直方图均衡化(DUO-HE)[9],给出了图像直方图的大致思路或形状。本文提出了RMSKBHE算法和DUO-HE算法,以更好地增强非对称输入图像的对比度,并为输出图像寻找更好的对比度增强和亮度保持。采用峰值信噪比(PSNR)和绝对修正平均亮度误差(AMMBE)等不同的质量测量技术,对RMSKBHE算法和DUO-HE算法进行了比较。发现DUO-HE算法的视觉感知和统计值优于RMSKBHE算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信