High-speed multiplication and multiple summand addition

R. S. Lim
{"title":"High-speed multiplication and multiple summand addition","authors":"R. S. Lim","doi":"10.1109/ARITH.1978.6155788","DOIUrl":null,"url":null,"abstract":"The problem of high-speed multiplication is considered from the viewpoint of summand generation and summand summation. The goal is to obtain at least a 2's-complement, 32-bit floating-point (sign plus 24-bit fraction) multiplication in 10 to 20 ns using ECL LSI packages. Summand generation is implemented by mxm-bit multipliers. The optimum values for m are 9, 13, 17, or 21. Summand summation is implemented by a row of (p, 2) column-summing counters. The (3, 2), (5, 2), and (7, 2) counters are optimum choices. These counters compress p inputs into two outputs plus nonpropagating carry bits, where these bits are added to the next higher-order stage with at most two full adder delays.","PeriodicalId":443215,"journal":{"name":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1978.6155788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The problem of high-speed multiplication is considered from the viewpoint of summand generation and summand summation. The goal is to obtain at least a 2's-complement, 32-bit floating-point (sign plus 24-bit fraction) multiplication in 10 to 20 ns using ECL LSI packages. Summand generation is implemented by mxm-bit multipliers. The optimum values for m are 9, 13, 17, or 21. Summand summation is implemented by a row of (p, 2) column-summing counters. The (3, 2), (5, 2), and (7, 2) counters are optimum choices. These counters compress p inputs into two outputs plus nonpropagating carry bits, where these bits are added to the next higher-order stage with at most two full adder delays.
高速乘法和多次求和加法
从求和生成和求和的角度考虑高速乘法问题。目标是使用ECL LSI封装在10到20ns内获得至少一个2补位,32位浮点(符号加24位分数)乘法。求和生成是由mxm位乘法器实现的。m的最优取值为9、13、17、21。求和是由一行(p, 2)列求和计数器实现的。(3,2)、(5,2)和(7,2)计数器是最优选择。这些计数器将p个输入压缩成两个输出加上非传播进位,其中这些位被添加到下一个高阶级,最多有两个完整的加法器延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信