Multi-tasking and Memcomputing with Memristor Cellular Nonlinear Networks

I. Messaris, A. Ascoli, A. S. Demirkol, R. Tetzlaff, L. Chua
{"title":"Multi-tasking and Memcomputing with Memristor Cellular Nonlinear Networks","authors":"I. Messaris, A. Ascoli, A. S. Demirkol, R. Tetzlaff, L. Chua","doi":"10.1109/ICECS49266.2020.9294882","DOIUrl":null,"url":null,"abstract":"Memristor Cellular Nonlinear Networks (M-CNNs) have been recently introduced as a functional upgrade of standard CNNs, empowered by the potential of memristors to perform storage and computing functionalities in the same area. This paper exploits the diverse features of M-CNNs, which are equipped with threshold-based binary resistance switching devices, introducing two state-of-the-art image processing M-CNNs: a) the multi-tasking CORNER-EDGE M-CNN, which performs corner or edge detection depending on the initial states of the memristors within the network; b) the memcomputing STORE-EDGE M-CNN, which outputs the edges of a binary input image, that is simultaneously stored in the memristors of the cellular array.","PeriodicalId":404022,"journal":{"name":"2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS49266.2020.9294882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Memristor Cellular Nonlinear Networks (M-CNNs) have been recently introduced as a functional upgrade of standard CNNs, empowered by the potential of memristors to perform storage and computing functionalities in the same area. This paper exploits the diverse features of M-CNNs, which are equipped with threshold-based binary resistance switching devices, introducing two state-of-the-art image processing M-CNNs: a) the multi-tasking CORNER-EDGE M-CNN, which performs corner or edge detection depending on the initial states of the memristors within the network; b) the memcomputing STORE-EDGE M-CNN, which outputs the edges of a binary input image, that is simultaneously stored in the memristors of the cellular array.
基于忆阻器细胞非线性网络的多任务和Memcomputing
忆阻器细胞非线性网络(m - cnn)最近被引入,作为标准cnn的功能升级,利用忆阻器的潜力在同一区域执行存储和计算功能。本文利用了基于阈值的二进制电阻开关器件的M-CNN的多种特征,介绍了两种最先进的图像处理M-CNN: a)多任务的corner - edge M-CNN,它根据网络内忆阻器的初始状态执行拐角或边缘检测;b) memcomputing STORE-EDGE M-CNN,输出二进制输入图像的边缘,该图像同时存储在蜂窝阵列的忆阻器中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信