I. Messaris, A. Ascoli, A. S. Demirkol, R. Tetzlaff, L. Chua
{"title":"Multi-tasking and Memcomputing with Memristor Cellular Nonlinear Networks","authors":"I. Messaris, A. Ascoli, A. S. Demirkol, R. Tetzlaff, L. Chua","doi":"10.1109/ICECS49266.2020.9294882","DOIUrl":null,"url":null,"abstract":"Memristor Cellular Nonlinear Networks (M-CNNs) have been recently introduced as a functional upgrade of standard CNNs, empowered by the potential of memristors to perform storage and computing functionalities in the same area. This paper exploits the diverse features of M-CNNs, which are equipped with threshold-based binary resistance switching devices, introducing two state-of-the-art image processing M-CNNs: a) the multi-tasking CORNER-EDGE M-CNN, which performs corner or edge detection depending on the initial states of the memristors within the network; b) the memcomputing STORE-EDGE M-CNN, which outputs the edges of a binary input image, that is simultaneously stored in the memristors of the cellular array.","PeriodicalId":404022,"journal":{"name":"2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS49266.2020.9294882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Memristor Cellular Nonlinear Networks (M-CNNs) have been recently introduced as a functional upgrade of standard CNNs, empowered by the potential of memristors to perform storage and computing functionalities in the same area. This paper exploits the diverse features of M-CNNs, which are equipped with threshold-based binary resistance switching devices, introducing two state-of-the-art image processing M-CNNs: a) the multi-tasking CORNER-EDGE M-CNN, which performs corner or edge detection depending on the initial states of the memristors within the network; b) the memcomputing STORE-EDGE M-CNN, which outputs the edges of a binary input image, that is simultaneously stored in the memristors of the cellular array.