{"title":"Shear Friction of Reinforced Self-Compacting Concrete Members","authors":"P. Desnerck, G. Schutter, G. L. Taerwe","doi":"10.14359/51663206","DOIUrl":null,"url":null,"abstract":"This paper describes how aggregate interlock along inclined cracks is one of the basic mechanisms that contribute to the shear resistance of reinforced concrete members. In self-compacting-concrete (SCC) the amount of coarse aggregates is lower than in conventional vibrated concrete (CVC). This different grading could have an influence on the aggregate interlock. To study this effect, push-off tests are carried out. The shear plane of the specimen is crossed by steel bars resulting in reinforcement ratios ranging between 0.45 and 2.68%. It follows that the experimentally determined shear friction of self-compacting concrete is slightly higher than the shear friction of CVC. However, the vertical displacement corresponding with the ultimate shear strength is larger.","PeriodicalId":232163,"journal":{"name":"SP-261: 10th ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-261: 10th ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/51663206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper describes how aggregate interlock along inclined cracks is one of the basic mechanisms that contribute to the shear resistance of reinforced concrete members. In self-compacting-concrete (SCC) the amount of coarse aggregates is lower than in conventional vibrated concrete (CVC). This different grading could have an influence on the aggregate interlock. To study this effect, push-off tests are carried out. The shear plane of the specimen is crossed by steel bars resulting in reinforcement ratios ranging between 0.45 and 2.68%. It follows that the experimentally determined shear friction of self-compacting concrete is slightly higher than the shear friction of CVC. However, the vertical displacement corresponding with the ultimate shear strength is larger.