Nonlinear Model Predictive Control of Robot Manipulators Using Quasi-LPV Representation

Mojtaba Esfandiari, Sonny Chan, G. Sutherland, D. Westwick
{"title":"Nonlinear Model Predictive Control of Robot Manipulators Using Quasi-LPV Representation","authors":"Mojtaba Esfandiari, Sonny Chan, G. Sutherland, D. Westwick","doi":"10.1109/ICCMA46720.2019.8988747","DOIUrl":null,"url":null,"abstract":"Nonlinear optimization techniques often suffer from time-consuming computational load, which impedes them to be implemented as controller of fast plans, or when a fast action like trajectory tracking is required. In this paper, a Nonlinear Model Predictive Control (NMPC) approach is used to perform the trajectory tracking problem in a robot manipulator in the presence of input saturation and un-modeled dynamics, using the Quasi-Linear Parameter Varying (Quasi-LPV) representation. In this method, instead of the nonlinear state difference equations of the system, a sequence of linearized state equations about a nominal state-control history, over the prediction horizon, is used. By so doing, standard Quadratic Programming (QP) optimization algorithms could be used for the online optimization problem, therefore, speed and efficiency of convergence to the optimal solution would be enhanced. Efficacy of this method is shown by simulation study of a 2-DOF robot manipulator.","PeriodicalId":377212,"journal":{"name":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","volume":"14 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA46720.2019.8988747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Nonlinear optimization techniques often suffer from time-consuming computational load, which impedes them to be implemented as controller of fast plans, or when a fast action like trajectory tracking is required. In this paper, a Nonlinear Model Predictive Control (NMPC) approach is used to perform the trajectory tracking problem in a robot manipulator in the presence of input saturation and un-modeled dynamics, using the Quasi-Linear Parameter Varying (Quasi-LPV) representation. In this method, instead of the nonlinear state difference equations of the system, a sequence of linearized state equations about a nominal state-control history, over the prediction horizon, is used. By so doing, standard Quadratic Programming (QP) optimization algorithms could be used for the online optimization problem, therefore, speed and efficiency of convergence to the optimal solution would be enhanced. Efficacy of this method is shown by simulation study of a 2-DOF robot manipulator.
基于拟lpv表示的机器人机械臂非线性模型预测控制
非线性优化技术通常存在计算量大的问题,这使得非线性优化技术难以应用于快速计划的控制,或者需要轨迹跟踪等快速操作。本文采用非线性模型预测控制(NMPC)方法,采用拟线性参数变化(Quasi-Linear Parameter Varying, lpv)表示,对存在输入饱和和未建模动力学的机械臂进行轨迹跟踪问题。该方法不使用系统的非线性状态差分方程,而是在预测范围内使用一系列关于标称状态控制历史的线性化状态方程。这样就可以使用标准的二次规划(QP)优化算法求解在线优化问题,从而提高了收敛到最优解的速度和效率。通过对一个二自由度机械臂的仿真研究,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信