A quasi-power-gated low-leakage stable SRAM cell

P. Nair, S. Eratne, E. John
{"title":"A quasi-power-gated low-leakage stable SRAM cell","authors":"P. Nair, S. Eratne, E. John","doi":"10.1109/MWSCAS.2010.5548705","DOIUrl":null,"url":null,"abstract":"Leakage power dissipation and stability continues to be a major concern in deep-submicron SRAM cell design. In this paper, a quasi-power-gating approach that reduces the leakage power dissipation in an SRAM cell while maintaining stability is proposed. As compared to a standard 6-transistor SRAM, it consists of four additional NMOS transistors. In the active mode, the cell is activated by enabling two NMOS transistors in the pull-down path of the inverter. In the idle mode, a quasi-power-gating scheme is employed to reduce leakage by utilizing stack effect. It was found that this cell resulted in about 39.54 percent and 30.5 percent leakage power savings at a supply voltage value of 1V and 300mV respectively. A stability increase was also observed when compared to the standard non-power-gated 6-transistor SRAM cell.","PeriodicalId":245322,"journal":{"name":"2010 53rd IEEE International Midwest Symposium on Circuits and Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 53rd IEEE International Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2010.5548705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Leakage power dissipation and stability continues to be a major concern in deep-submicron SRAM cell design. In this paper, a quasi-power-gating approach that reduces the leakage power dissipation in an SRAM cell while maintaining stability is proposed. As compared to a standard 6-transistor SRAM, it consists of four additional NMOS transistors. In the active mode, the cell is activated by enabling two NMOS transistors in the pull-down path of the inverter. In the idle mode, a quasi-power-gating scheme is employed to reduce leakage by utilizing stack effect. It was found that this cell resulted in about 39.54 percent and 30.5 percent leakage power savings at a supply voltage value of 1V and 300mV respectively. A stability increase was also observed when compared to the standard non-power-gated 6-transistor SRAM cell.
一种准功率门控低漏稳定SRAM单元
泄漏功耗和稳定性一直是深亚微米SRAM电池设计中的主要问题。本文提出了一种准功率门控方法,可以在保持稳定性的同时降低SRAM单元的泄漏功耗。与标准的6晶体管SRAM相比,它由四个额外的NMOS晶体管组成。在有源模式下,通过使能逆变器的下拉路径中的两个NMOS晶体管来激活单元。在空闲模式下,采用准功率门控方案,利用堆栈效应减少漏电。结果发现,在电源电压为1V和300mV时,该电池分别节省了约39.54%和30.5%的泄漏功率。与标准的非功率门控6晶体管SRAM单元相比,稳定性也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信