{"title":"Feature Extraction from Equipment Sensor Signals with Time Series Clustering and Its Application to Defect Prediction","authors":"Daisuke Hamaguchi, Tomonari Masada, Takumi Eguchi","doi":"10.1109/ISSM51728.2020.9377525","DOIUrl":null,"url":null,"abstract":"In semiconductor manufacturing processes, it is important to quickly identify any signs of the occurrence of defects. We applied a time-series clustering method to the signal data of processing equipment and obtained information related to the occurrence of defects. By using the information as the feature values of a prediction model, we were able to predict defects more accurately than by using only conventional feature values.","PeriodicalId":270309,"journal":{"name":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM51728.2020.9377525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In semiconductor manufacturing processes, it is important to quickly identify any signs of the occurrence of defects. We applied a time-series clustering method to the signal data of processing equipment and obtained information related to the occurrence of defects. By using the information as the feature values of a prediction model, we were able to predict defects more accurately than by using only conventional feature values.