Exploration of Deep Neural Networks with Symmetric Simplicial Layers for On-Satellite Earth Observation Processing

N. Rodríguez, L. Ratschbacher, Chunlei Xu, P. Julián
{"title":"Exploration of Deep Neural Networks with Symmetric Simplicial Layers for On-Satellite Earth Observation Processing","authors":"N. Rodríguez, L. Ratschbacher, Chunlei Xu, P. Julián","doi":"10.1109/CAE54497.2022.9762497","DOIUrl":null,"url":null,"abstract":"Bringing artificial intelligence on-board of space crafts holds significant promise for enhancing the capabilities of space missions. On-board processing can enable responsive missions that are not limited by the latency and bandwidth of the communication to earth. However, in many cases dedicated solutions are required due to the resource constraint environment of satellites. In this contribution we explore architectures for on-board processing of earth observation imagery based on deep neural networks with Symmetric Simplicial (SymSim) layers. The performance of the networks are assessed for the task of plume and scenery classification in RGB earth observation pictures. We propose an extended SymSim algorithm and show its performance in small variants of ResNet compared to the same architectures with convolutional blocks.","PeriodicalId":406990,"journal":{"name":"2022 Argentine Conference on Electronics (CAE)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Argentine Conference on Electronics (CAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAE54497.2022.9762497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Bringing artificial intelligence on-board of space crafts holds significant promise for enhancing the capabilities of space missions. On-board processing can enable responsive missions that are not limited by the latency and bandwidth of the communication to earth. However, in many cases dedicated solutions are required due to the resource constraint environment of satellites. In this contribution we explore architectures for on-board processing of earth observation imagery based on deep neural networks with Symmetric Simplicial (SymSim) layers. The performance of the networks are assessed for the task of plume and scenery classification in RGB earth observation pictures. We propose an extended SymSim algorithm and show its performance in small variants of ResNet compared to the same architectures with convolutional blocks.
面向星上地球观测处理的对称简单层深度神经网络探索
将人工智能引入航天器对于提高太空任务的能力具有重要的前景。机载处理可以使响应任务不受与地球通信的延迟和带宽的限制。然而,在许多情况下,由于卫星的资源环境限制,需要专门的解决方案。在这篇文章中,我们探索了基于对称简单层(SymSim)的深度神经网络的机载地球观测图像处理架构。在RGB对地观测图像羽流和景物分类任务中,对网络的性能进行了评价。我们提出了一种扩展的SymSim算法,并将其在ResNet的小变体中的性能与具有卷积块的相同架构进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信