SME: A Systolic Multiply-accumulate Engine for MLP-based Neural Network

Haochuan Wan, Chaolin Rao, Yueyang Zheng, Pingqiang Zhou, Xin Lou
{"title":"SME: A Systolic Multiply-accumulate Engine for MLP-based Neural Network","authors":"Haochuan Wan, Chaolin Rao, Yueyang Zheng, Pingqiang Zhou, Xin Lou","doi":"10.1109/APCCAS55924.2022.10090307","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an output stationary systolic multiply-accumulate engine (SME) with an optimized dataflow for multilayer perceptron (MLP) computation in the state-of-the-art Neural Radiance Field (NeRF) algorithms. We also analyze activation patterns of the NeRF algorithm which uses ReLU as the activation function, and find that the activation can be sparse, especially in the last several layers. We therefore further take advantage of activation sparsity by gating corresponding multiplications in the SME for power saving. The proposed SME is implemented using SpinalHDL, which is translated to VerilogHDL for VLSI implementation based on 40nm CMOS technology. Evaluation results show that, working at 400MHz, the proposed SME occupies 31.371mm2 circuit area, and consumes 873.7mW power, translating 12,708.10 ksamples/J and 360.06 ksamples/s/mm2.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an output stationary systolic multiply-accumulate engine (SME) with an optimized dataflow for multilayer perceptron (MLP) computation in the state-of-the-art Neural Radiance Field (NeRF) algorithms. We also analyze activation patterns of the NeRF algorithm which uses ReLU as the activation function, and find that the activation can be sparse, especially in the last several layers. We therefore further take advantage of activation sparsity by gating corresponding multiplications in the SME for power saving. The proposed SME is implemented using SpinalHDL, which is translated to VerilogHDL for VLSI implementation based on 40nm CMOS technology. Evaluation results show that, working at 400MHz, the proposed SME occupies 31.371mm2 circuit area, and consumes 873.7mW power, translating 12,708.10 ksamples/J and 360.06 ksamples/s/mm2.
基于mlp的神经网络的收缩乘法累积引擎
在本文中,我们提出了一个输出平稳收缩乘累积引擎(SME),该引擎具有优化的数据流,用于最先进的神经辐射场(NeRF)算法中的多层感知器(MLP)计算。我们还分析了使用ReLU作为激活函数的NeRF算法的激活模式,发现激活可以是稀疏的,特别是在最后几层。因此,我们进一步利用激活稀疏性,通过在SME中控制相应的乘法来节省电力。所提出的SME使用SpinalHDL实现,并将其转换为VerilogHDL,用于基于40nm CMOS技术的VLSI实现。评估结果表明,在400MHz工作频率下,所提出的SME电路占地31.371mm2,功耗873.7mW,转换12708.10 ksamples/J和360.06 ksamples/s/mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信