Fusion estimation for two sensors with nonuniform estimation rates

Wen-an Zhang, Steven Liu, Michael Z. Q. Chen, Li Yu
{"title":"Fusion estimation for two sensors with nonuniform estimation rates","authors":"Wen-an Zhang, Steven Liu, Michael Z. Q. Chen, Li Yu","doi":"10.1109/CDC.2012.6426991","DOIUrl":null,"url":null,"abstract":"The fusion estimation is investigated in this paper for two-sensor discrete-time stochastic systems. A finite-horizon optimal linear estimator is designed for each sensor to generate local estimates with a nonuniform estimation rate. Then, a fusion rule with matrix weights in the linear minimum variance sense is designed for each sensor to fuse local estimates from itself and the other sensors. The proposed algorithm reduces to the one that can be used to design asynchronous fusion estimators with uncorrelated measurement noises. Finally, the effectiveness of the proposed results is illustrated by a simulation example of a maneuvering target tracking system.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6426991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The fusion estimation is investigated in this paper for two-sensor discrete-time stochastic systems. A finite-horizon optimal linear estimator is designed for each sensor to generate local estimates with a nonuniform estimation rate. Then, a fusion rule with matrix weights in the linear minimum variance sense is designed for each sensor to fuse local estimates from itself and the other sensors. The proposed algorithm reduces to the one that can be used to design asynchronous fusion estimators with uncorrelated measurement noises. Finally, the effectiveness of the proposed results is illustrated by a simulation example of a maneuvering target tracking system.
具有非均匀估计速率的两个传感器的融合估计
研究了双传感器离散随机系统的融合估计问题。为每个传感器设计了一个有限视界最优线性估计器,以产生具有非均匀估计率的局部估计。然后,设计了线性最小方差意义下的矩阵权值融合规则,实现了各传感器自身和其他传感器的局部估计融合。该算法可用于设计测量噪声不相关的异步融合估计器。最后,通过一个机动目标跟踪系统的仿真实例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信