First-principles study of boron doping-induced band gap narrowing in 3C-SiC

R. Ding, Yintang Yang, Xingrong Ren, Xiaowen Xi, Bing Zhang
{"title":"First-principles study of boron doping-induced band gap narrowing in 3C-SiC","authors":"R. Ding, Yintang Yang, Xingrong Ren, Xiaowen Xi, Bing Zhang","doi":"10.1109/IPFA.2009.5232584","DOIUrl":null,"url":null,"abstract":"Based on density functional theory (DFT), the effect of boron (B) doping concentration on band gap of 3C-SiC is investigated. The analysis of density of states (DOS) and electron distribution indicates that the band gap tends to narrow with the increase of B concentration. The top of valence band, is contributed from B 2p level, and the bottom of conduction band, from B 2s in B-doped 3C-SiC. Both of them shift towards lower energy direction. With B concentration increases, the displacement of the bottom of conduction band is larger than that of the top of valence band, resulting in the narrowing of band gap. This result is useful for controlling band gap of doped 3C-SiC, and should be helpful for enhancing reliability and broadening the application ranges of SiC devices.","PeriodicalId":210619,"journal":{"name":"2009 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2009.5232584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on density functional theory (DFT), the effect of boron (B) doping concentration on band gap of 3C-SiC is investigated. The analysis of density of states (DOS) and electron distribution indicates that the band gap tends to narrow with the increase of B concentration. The top of valence band, is contributed from B 2p level, and the bottom of conduction band, from B 2s in B-doped 3C-SiC. Both of them shift towards lower energy direction. With B concentration increases, the displacement of the bottom of conduction band is larger than that of the top of valence band, resulting in the narrowing of band gap. This result is useful for controlling band gap of doped 3C-SiC, and should be helpful for enhancing reliability and broadening the application ranges of SiC devices.
硼掺杂致3C-SiC带隙缩小的第一性原理研究
基于密度泛函理论(DFT),研究了硼(B)掺杂浓度对3C-SiC带隙的影响。态密度(DOS)和电子分布分析表明,带隙随着B浓度的增加而缩小。在掺B的3C-SiC中,价带的顶部由b2p能级贡献,导带的底部由b2s能级贡献。它们都向低能方向移动。随着B浓度的增加,导带底部的位移大于价带顶部的位移,导致带隙缩小。这一结果对于控制掺杂3C-SiC的带隙,提高SiC器件的可靠性和扩大其应用范围具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信