S. Blayac, M. Riet, J. Benchimol, M. Abboun, F. Aniel, P. Berdaguer, A.M. Duchenois, A. Konczykowska, J. Godin
{"title":"InP HBT self-aligned technology for 40 Gbit/s ICs: fabrication and CAD geometric model","authors":"S. Blayac, M. Riet, J. Benchimol, M. Abboun, F. Aniel, P. Berdaguer, A.M. Duchenois, A. Konczykowska, J. Godin","doi":"10.1109/ICIPRM.1999.773738","DOIUrl":null,"url":null,"abstract":"InP/InGaAs DHBT technology for 40 Gb/s ICs is first presented. For these circuit applications, a sufficient breakdown voltage (>5 V), a static gain around 50, cutoff frequencies (f/sub T/) and maximum oscillation frequencies (f/sub max/) greater than 100 GHz are needed. High performance InP/InGaAs DHBT grown by chemical beam epitaxy (CBE) are reported with 125 GHz f/sub T/, 128 GHz f/sub max/ and a gain of 50 at a current density of 1/spl times/10/sup 5/ A/cm/sup 2/. Devices geometry optimisation is performed using a geometric model based on a set of analytical equations. This tool allows not only technological optimisation but also function-adapted individual sizing of the devices in the circuits.","PeriodicalId":213868,"journal":{"name":"Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM'99) (Cat. No.99CH36362)","volume":"2004 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM'99) (Cat. No.99CH36362)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.1999.773738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
InP/InGaAs DHBT technology for 40 Gb/s ICs is first presented. For these circuit applications, a sufficient breakdown voltage (>5 V), a static gain around 50, cutoff frequencies (f/sub T/) and maximum oscillation frequencies (f/sub max/) greater than 100 GHz are needed. High performance InP/InGaAs DHBT grown by chemical beam epitaxy (CBE) are reported with 125 GHz f/sub T/, 128 GHz f/sub max/ and a gain of 50 at a current density of 1/spl times/10/sup 5/ A/cm/sup 2/. Devices geometry optimisation is performed using a geometric model based on a set of analytical equations. This tool allows not only technological optimisation but also function-adapted individual sizing of the devices in the circuits.