The architecture and the technology characterization of an FPGA-based customizable Application-Specific Vector Processor

J. Sykora, L. Kohout, R. Bartosinski, Leos Kafka, M. Danek, P. Honzík
{"title":"The architecture and the technology characterization of an FPGA-based customizable Application-Specific Vector Processor","authors":"J. Sykora, L. Kohout, R. Bartosinski, Leos Kafka, M. Danek, P. Honzík","doi":"10.1109/DDECS.2012.6219026","DOIUrl":null,"url":null,"abstract":"The traditional approach to IP core design is to use simulations with test vectors. This is not feasible when dealing with complex function cores such as the Image Segmentation case-study algorithm in this paper. An algorithm developer needs to carry out experiments on large real-world data sets, with fast turn-around times, and in real time to facilitate performance tuning and incremental development. We propose a methodology called Application-Specific Vector Processor (ASVP). The ASVP approach first constructs a programmable architecture customized for a given application, then employs software techniques to develop firmware that implements the algorithm. Our sample implementation that supports the Image Segmentation kernel is capable of 332 MFLOPs, 400 MFLOPs, and 250 MFLOPs per coprocessor core in Virtex 5, Virtex 6 and Spartan 6 technologies, respectively. The core size is roughly 1500 slices, depending on the configuration and technology.","PeriodicalId":131623,"journal":{"name":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2012.6219026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The traditional approach to IP core design is to use simulations with test vectors. This is not feasible when dealing with complex function cores such as the Image Segmentation case-study algorithm in this paper. An algorithm developer needs to carry out experiments on large real-world data sets, with fast turn-around times, and in real time to facilitate performance tuning and incremental development. We propose a methodology called Application-Specific Vector Processor (ASVP). The ASVP approach first constructs a programmable architecture customized for a given application, then employs software techniques to develop firmware that implements the algorithm. Our sample implementation that supports the Image Segmentation kernel is capable of 332 MFLOPs, 400 MFLOPs, and 250 MFLOPs per coprocessor core in Virtex 5, Virtex 6 and Spartan 6 technologies, respectively. The core size is roughly 1500 slices, depending on the configuration and technology.
基于fpga的可定制专用矢量处理器的体系结构和技术表征
IP核设计的传统方法是使用带有测试向量的模拟。这在处理复杂的函数核心时是不可行的,例如本文的图像分割案例研究算法。算法开发人员需要在大型真实数据集上进行实验,需要快速的周转时间,并且实时地促进性能调优和增量开发。我们提出了一种称为专用向量处理器(ASVP)的方法。ASVP方法首先构建一个针对给定应用程序定制的可编程架构,然后使用软件技术开发实现算法的固件。我们的示例实现支持图像分割内核,在Virtex 5、Virtex 6和Spartan 6技术中,每个协处理器内核分别能够达到332 MFLOPs、400 MFLOPs和250 MFLOPs。核心大小大约为1500片,具体取决于配置和技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信