Density matrix renormalisation group method and symmetries of the Hamiltonian

I. McCulloch, M. Gulácsi
{"title":"Density matrix renormalisation group method and symmetries of the Hamiltonian","authors":"I. McCulloch, M. Gulácsi","doi":"10.1071/PH00023","DOIUrl":null,"url":null,"abstract":"Substantial improvements in the computational effort in a density matrix renormalisation program can be made by utilising symmetries of the Hamiltonian. Extra quantum numbers are always desirable to include in the calculation, since it allows the Hilbert space of the superblock to be refined. Since the speed of the calculation is approximately O(n 3 ) in superblock states, the speed increase in targeting a specific total spin state can be considerable. In this paper a new density matrix renormalisation algorithm is presented which conserves the total spin. The general procedure obtained works for any operator, even operators that do not commute with the Hamiltonian.","PeriodicalId":170873,"journal":{"name":"Australian Journal of Physics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/PH00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Substantial improvements in the computational effort in a density matrix renormalisation program can be made by utilising symmetries of the Hamiltonian. Extra quantum numbers are always desirable to include in the calculation, since it allows the Hilbert space of the superblock to be refined. Since the speed of the calculation is approximately O(n 3 ) in superblock states, the speed increase in targeting a specific total spin state can be considerable. In this paper a new density matrix renormalisation algorithm is presented which conserves the total spin. The general procedure obtained works for any operator, even operators that do not commute with the Hamiltonian.
密度矩阵重整化群方法与哈密顿量的对称性
利用哈密顿量的对称性,可以大大改进密度矩阵重整化程序的计算工作。在计算中总是需要包含额外的量子数,因为它允许超级块的希尔伯特空间得到改进。由于在超块状态下的计算速度约为0 (n 3),因此针对特定的总自旋状态的速度增加可能是相当可观的。本文提出了一种守恒总自旋的密度矩阵重整化算法。所得到的一般过程适用于任何算子,甚至不与哈密顿算子交换的算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信