Fuzzy complexity estimation of a nonlinear learning machine

Leaming Machine, Bojan
{"title":"Fuzzy complexity estimation of a nonlinear learning machine","authors":"Leaming Machine, Bojan","doi":"10.1109/EURCON.2003.1248174","DOIUrl":null,"url":null,"abstract":"Theories for a complexity estimation of different learning machines use the Vapnik Chervonenkis dimension, or various approximations to it, to predict optimal structure of a learning machine. This approach has some deficiencies that stems from Aristotelian logic foundation behind the Vapnik Chervonenkis dimension. An alternative fuzzy logic approach is introduced that brings a concise definition of errors and complexity estimation of a learning machine. In contradiction to the statistical learning theory where errors are actually counted in the fuzzy logic approach errors are measured. It is necessary to include information about the distances of violations about the quality of prediction. Some experiments are presented to evaluate a quality of propose algorithm.","PeriodicalId":337983,"journal":{"name":"The IEEE Region 8 EUROCON 2003. Computer as a Tool.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The IEEE Region 8 EUROCON 2003. Computer as a Tool.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURCON.2003.1248174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Theories for a complexity estimation of different learning machines use the Vapnik Chervonenkis dimension, or various approximations to it, to predict optimal structure of a learning machine. This approach has some deficiencies that stems from Aristotelian logic foundation behind the Vapnik Chervonenkis dimension. An alternative fuzzy logic approach is introduced that brings a concise definition of errors and complexity estimation of a learning machine. In contradiction to the statistical learning theory where errors are actually counted in the fuzzy logic approach errors are measured. It is necessary to include information about the distances of violations about the quality of prediction. Some experiments are presented to evaluate a quality of propose algorithm.
非线性学习机的模糊复杂度估计
不同学习机器的复杂性估计理论使用Vapnik Chervonenkis维数,或其各种近似,来预测学习机器的最佳结构。这种方法有一些缺陷,这些缺陷源于Vapnik Chervonenkis维背后的亚里士多德逻辑基础。介绍了一种模糊逻辑方法,该方法对学习机的误差和复杂度估计给出了一个简明的定义。与统计学习理论相反,在模糊逻辑方法中,误差实际上是被计算在内的。有必要包括关于预测质量的违反距离的信息。给出了一些实验来评估该算法的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信