{"title":"Quasi-Associative Algebras on the Frobenius Lie Algebra M_3 (R)⊕gl_3 (R)","authors":"Henti Henti, E. Kurniadi, E. Carnia","doi":"10.24042/AJPM.V12I1.8485","DOIUrl":null,"url":null,"abstract":"In this paper, we study the quasi-associative algebra property for the real Frobenius Lie algebra of dimension 18. The work aims to prove that is a quasi-associative algebra and to compute its formulas explicitly. To achieve this aim, we apply the literature reviews method corresponding to Frobenius Lie algebras, Frobenius functionals, and the structures of quasi-associative algebras. In the first step, we choose a Frobenius functional determined by direct computations of a bracket matrix of and in the second step, using an induced symplectic structure, we obtain the explicit formulas of quasi-associative algebras for . As the results, we proved that has the quasi-associative algebras property, and we gave their formulas explicitly. For future research, the case of the quasi-associative algebras on is still an open problem to be investigated. Our result can motivate to solve this problem. ","PeriodicalId":385020,"journal":{"name":"Al-Jabar : Jurnal Pendidikan Matematika","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Jabar : Jurnal Pendidikan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24042/AJPM.V12I1.8485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we study the quasi-associative algebra property for the real Frobenius Lie algebra of dimension 18. The work aims to prove that is a quasi-associative algebra and to compute its formulas explicitly. To achieve this aim, we apply the literature reviews method corresponding to Frobenius Lie algebras, Frobenius functionals, and the structures of quasi-associative algebras. In the first step, we choose a Frobenius functional determined by direct computations of a bracket matrix of and in the second step, using an induced symplectic structure, we obtain the explicit formulas of quasi-associative algebras for . As the results, we proved that has the quasi-associative algebras property, and we gave their formulas explicitly. For future research, the case of the quasi-associative algebras on is still an open problem to be investigated. Our result can motivate to solve this problem.