Locally recurrent Functional Link Fuzzy neural network and unscented H-infinity filter for shortterm prediction of load time series in energy markets

D. K. Bebarta, R. Bisoi, P. Dash
{"title":"Locally recurrent Functional Link Fuzzy neural network and unscented H-infinity filter for shortterm prediction of load time series in energy markets","authors":"D. K. Bebarta, R. Bisoi, P. Dash","doi":"10.1109/PCITC.2015.7438080","DOIUrl":null,"url":null,"abstract":"The paper presents a locally recurrent Fuzzy neural architecture to forecast electrical loads in an energy market on a short-term basis. In recent years combination of recurrent filter neurons with Fuzzy neural networks has gained significance to provide the identification of the temporal nature of the time series data. Further to increase the dimension of the input space the consequent part of the fuzzy rules are augmented with functional link networks and this provides a better approximation of the input-output mapping. Besides to provide faster learning in comparison to the gradient descent or evolutionary techniques a robust H-infinity unscented Kalman filter is used. Some of the energy market load time series data are used for numerical experimentation to highlight the significant improvement in the prediction performance of the hybrid Functional Link Fuzzy neural network (FLFNN).","PeriodicalId":253244,"journal":{"name":"2015 IEEE Power, Communication and Information Technology Conference (PCITC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Power, Communication and Information Technology Conference (PCITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCITC.2015.7438080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper presents a locally recurrent Fuzzy neural architecture to forecast electrical loads in an energy market on a short-term basis. In recent years combination of recurrent filter neurons with Fuzzy neural networks has gained significance to provide the identification of the temporal nature of the time series data. Further to increase the dimension of the input space the consequent part of the fuzzy rules are augmented with functional link networks and this provides a better approximation of the input-output mapping. Besides to provide faster learning in comparison to the gradient descent or evolutionary techniques a robust H-infinity unscented Kalman filter is used. Some of the energy market load time series data are used for numerical experimentation to highlight the significant improvement in the prediction performance of the hybrid Functional Link Fuzzy neural network (FLFNN).
局部递归功能链接模糊神经网络和无气味h∞滤波器用于能源市场负荷时间序列短期预测
本文提出了一种局部递归模糊神经网络结构,用于短期预测能源市场的电力负荷。近年来,将递归滤波神经元与模糊神经网络相结合,对时间序列数据的时间性质进行识别具有重要意义。为了进一步增加输入空间的维度,模糊规则的结果部分用功能链接网络进行扩充,这提供了一个更好的输入-输出映射近似。除了提供比梯度下降或进化技术更快的学习之外,还使用了鲁棒的h -∞无气味卡尔曼滤波器。利用部分能源市场负荷时间序列数据进行数值实验,验证了混合功能链接模糊神经网络(FLFNN)预测性能的显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信