Channel selection for EEG-based biometric recognition

Rodrigo A. de Freitas Vieira, Clodoaldo A. de Moraes Lima
{"title":"Channel selection for EEG-based biometric recognition","authors":"Rodrigo A. de Freitas Vieira, Clodoaldo A. de Moraes Lima","doi":"10.1145/3229345.3229395","DOIUrl":null,"url":null,"abstract":"Person identification is an important factor for information systems. Emerging technologies for security such as biometric identification based on EEG signals, although promising, still require extensive research and further refinement before applied in practice. This work address the problem of EEG channel selection for biometric identification. Five forms of EEG signal segmentation are explored before the feature extraction by autoregressive model (AR model). Channel selection is performed with two approaches, genetic algorithms and search-based ranking, and we use the classifiers k-nearest neighbor (KNN) and support vector machines (SVM) for identification. The results indicate that it is possible to decrease up to 9 channels, regardless of individuals, and hold an accuracy close to the one obtained with all the 64 channels.","PeriodicalId":284178,"journal":{"name":"Proceedings of the XIV Brazilian Symposium on Information Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the XIV Brazilian Symposium on Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3229345.3229395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Person identification is an important factor for information systems. Emerging technologies for security such as biometric identification based on EEG signals, although promising, still require extensive research and further refinement before applied in practice. This work address the problem of EEG channel selection for biometric identification. Five forms of EEG signal segmentation are explored before the feature extraction by autoregressive model (AR model). Channel selection is performed with two approaches, genetic algorithms and search-based ranking, and we use the classifiers k-nearest neighbor (KNN) and support vector machines (SVM) for identification. The results indicate that it is possible to decrease up to 9 channels, regardless of individuals, and hold an accuracy close to the one obtained with all the 64 channels.
基于脑电图的生物特征识别通道选择
人的身份识别是信息系统的一个重要因素。新兴的安全技术,如基于脑电图信号的生物识别技术,虽然前景广阔,但在应用于实践之前,仍需要广泛的研究和进一步的完善。研究了生物特征识别中脑电信号通道的选择问题。在自回归模型(AR模型)提取特征之前,探索了五种形式的脑电信号分割。通道选择采用遗传算法和基于搜索的排序两种方法,并使用k-最近邻(KNN)和支持向量机(SVM)分类器进行识别。结果表明,无论个体如何,最多可以减少9个通道,并且保持接近所有64个通道获得的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信