Recent Advances in Video Action Recognition with 3D Convolutions

Kensho Hara
{"title":"Recent Advances in Video Action Recognition with 3D Convolutions","authors":"Kensho Hara","doi":"10.1587/transfun.2020imp0012","DOIUrl":null,"url":null,"abstract":"The performance of video action recognition has improved significantly in recent decades. Current recognition approaches mainly utilize convolutional neural networks to acquire video feature representations. In addition to the spatial information of video frames, temporal information such as motions and changes is important for recognizing videos. Therefore, the use of convolutions in a spatiotemporal threedimensional (3D) space for representing spatiotemporal features has garnered significant attention. Herein, we introduce recent advances in 3D convolutions for video action recognition. key words: video recognition, action recognition, 3D convolutions, survey","PeriodicalId":348826,"journal":{"name":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2020imp0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The performance of video action recognition has improved significantly in recent decades. Current recognition approaches mainly utilize convolutional neural networks to acquire video feature representations. In addition to the spatial information of video frames, temporal information such as motions and changes is important for recognizing videos. Therefore, the use of convolutions in a spatiotemporal threedimensional (3D) space for representing spatiotemporal features has garnered significant attention. Herein, we introduce recent advances in 3D convolutions for video action recognition. key words: video recognition, action recognition, 3D convolutions, survey
基于三维卷积的视频动作识别的最新进展
近几十年来,视频动作识别的性能有了显著提高。目前的识别方法主要是利用卷积神经网络来获取视频特征表示。除了视频帧的空间信息外,运动和变化等时间信息对视频识别也很重要。因此,在时空三维(3D)空间中使用卷积来表示时空特征已经引起了人们的极大关注。在此,我们介绍了用于视频动作识别的3D卷积的最新进展。关键词:视频识别,动作识别,三维卷积,调查
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信