Alec Vercruysse, M. W. Miller, Joshua Brake, D. Harris
{"title":"A Tutorial-style Single-cycle Fast Fourier Transform Processor","authors":"Alec Vercruysse, M. W. Miller, Joshua Brake, D. Harris","doi":"10.1145/3526241.3530329","DOIUrl":null,"url":null,"abstract":"The Fast Fourier Transform (FFT) is one of the most important algorithms of the past century. It presents a way to compute the discrete Fourier transform with a computational complexity of O(N log2(N)). Its structure also provides an excellent example of the power of custom hardware accelerators. However, current tutorial-style papers implementing the FFT are not well-suited for undergraduate students since they are either too vague on important implementation details or use a pipelined architecture which can obscure important fundamental concepts of the accelerator. This paper presents a simple, single-cycle version of an FFT hardware accelerator that can be implemented on an FPGA and is accompanied with source code to easily simulate and synthesize the design available at https://doi.org/10.5281/zenodo.6219524.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The Fast Fourier Transform (FFT) is one of the most important algorithms of the past century. It presents a way to compute the discrete Fourier transform with a computational complexity of O(N log2(N)). Its structure also provides an excellent example of the power of custom hardware accelerators. However, current tutorial-style papers implementing the FFT are not well-suited for undergraduate students since they are either too vague on important implementation details or use a pipelined architecture which can obscure important fundamental concepts of the accelerator. This paper presents a simple, single-cycle version of an FFT hardware accelerator that can be implemented on an FPGA and is accompanied with source code to easily simulate and synthesize the design available at https://doi.org/10.5281/zenodo.6219524.