Robustness of forensic speaker verification systems based on Alize/Lia_Ral toolkit

Francesco Bellomo, F. Beritelli, E. Sciacca
{"title":"Robustness of forensic speaker verification systems based on Alize/Lia_Ral toolkit","authors":"Francesco Bellomo, F. Beritelli, E. Sciacca","doi":"10.1109/BIOMS.2014.6951542","DOIUrl":null,"url":null,"abstract":"This paper presents the performance analysis of Alize/Lia_Ral algorithms in forensic speaker verification applications. In particular, in this work we evaluate the performance impact of speech signal degradation considering the background noise level, speech rate variation, audio signal length used for testing, GSM radio channel, etc. The Alize/Lia_Ral platform has demonstrated a strong dependence on the ambient noise and a slight dependence on Lombard effect, bandwidth reduction, length of the audio signal, and changes in speech rate.","PeriodicalId":175781,"journal":{"name":"2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOMS.2014.6951542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the performance analysis of Alize/Lia_Ral algorithms in forensic speaker verification applications. In particular, in this work we evaluate the performance impact of speech signal degradation considering the background noise level, speech rate variation, audio signal length used for testing, GSM radio channel, etc. The Alize/Lia_Ral platform has demonstrated a strong dependence on the ambient noise and a slight dependence on Lombard effect, bandwidth reduction, length of the audio signal, and changes in speech rate.
基于Alize/Lia_Ral工具包的法医说话人验证系统的鲁棒性
本文介绍了Alize/Lia_Ral算法在法医说话人验证应用中的性能分析。在这项工作中,我们特别考虑了背景噪声水平、语音速率变化、用于测试的音频信号长度、GSM无线电信道等因素,评估了语音信号退化对性能的影响。Alize/Lia_Ral平台对环境噪声有很强的依赖性,对伦巴第效应、带宽减少、音频信号长度和语音速率变化有轻微的依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信