A Content-Based Recommendation System Using TrueSkill

L. Quispe, José Eduardo Ochoa Luna
{"title":"A Content-Based Recommendation System Using TrueSkill","authors":"L. Quispe, José Eduardo Ochoa Luna","doi":"10.1109/MICAI.2015.37","DOIUrl":null,"url":null,"abstract":"We present a probabilistic approach based on TrueSkill for Content-Based Recommendation Systems. On one hand, this proposal allow us to tackle the \"cold start\" problem because it relies on a content-based approach. On the other hand, it is valuable for handling high uncertainty since it solely depends on available items and ratings given by users. Thus, there is no dependency on the number of items and users. In addition, it is highly scalable because user preferences get richer as items get ranked.","PeriodicalId":448255,"journal":{"name":"2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2015.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a probabilistic approach based on TrueSkill for Content-Based Recommendation Systems. On one hand, this proposal allow us to tackle the "cold start" problem because it relies on a content-based approach. On the other hand, it is valuable for handling high uncertainty since it solely depends on available items and ratings given by users. Thus, there is no dependency on the number of items and users. In addition, it is highly scalable because user preferences get richer as items get ranked.
基于TrueSkill的内容推荐系统
我们提出了一种基于TrueSkill的基于内容的推荐系统的概率方法。一方面,这个提议允许我们解决“冷启动”问题,因为它依赖于基于内容的方法。另一方面,它对于处理高度不确定性很有价值,因为它完全依赖于可用的物品和用户给出的评级。因此,不依赖于项目和用户的数量。此外,它具有高度可扩展性,因为随着物品排名的提高,用户偏好也会变得更加丰富。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信