Multivariable adaptive neural control based on multimodel emulator for nonlinear square MIMO systems

N. Bahri, A. Atig, R. Abdennour, F. Druaux, D. Lefebvre
{"title":"Multivariable adaptive neural control based on multimodel emulator for nonlinear square MIMO systems","authors":"N. Bahri, A. Atig, R. Abdennour, F. Druaux, D. Lefebvre","doi":"10.1109/SSD.2014.6808769","DOIUrl":null,"url":null,"abstract":"This work describes multivariable adaptive neural control based on multimodel emulator for nonlinear square MIMO systems. Multimodel approach is an interesting alternative and a powerful tool for modelling and emulating complex processes. This paper deals with the identification of nonlinear MIMO systems employing an uncoupled multimodel. Efficiency of this multimodel for systems emulation is illustrated in a multivariable adaptive neural control schemes. Neither initialization parameter and nor online adaptation are required in this case. The effectiveness of the proposed multimodel emulator and the control design are shown through numerical simulations.","PeriodicalId":168063,"journal":{"name":"2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14)","volume":"14 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2014.6808769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This work describes multivariable adaptive neural control based on multimodel emulator for nonlinear square MIMO systems. Multimodel approach is an interesting alternative and a powerful tool for modelling and emulating complex processes. This paper deals with the identification of nonlinear MIMO systems employing an uncoupled multimodel. Efficiency of this multimodel for systems emulation is illustrated in a multivariable adaptive neural control schemes. Neither initialization parameter and nor online adaptation are required in this case. The effectiveness of the proposed multimodel emulator and the control design are shown through numerical simulations.
基于多模型仿真器的非线性方形MIMO系统多变量自适应神经控制
本文介绍了基于多模型仿真器的非线性方形MIMO系统的多变量自适应神经控制。多模型方法是一种有趣的替代方法,也是建模和仿真复杂过程的强大工具。本文研究了非耦合多模型非线性多输入多输出系统的辨识问题。通过一个多变量自适应神经控制方案,说明了该多模型在系统仿真中的有效性。在这种情况下,既不需要初始化参数,也不需要在线适配。通过数值仿真验证了所提出的多模型仿真器和控制设计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信