{"title":"Maximal persistent surveillance under safety constraints","authors":"Eduardo Arvelo, Eric J. Kim, N. C. Martins","doi":"10.1109/ICRA.2013.6631148","DOIUrl":null,"url":null,"abstract":"This paper presents a method for the design of time-invariant memoryless control policies for robots tasked with persistent surveillance of an area in which there are forbidden regions. We model each robot as a controlled Markov chain whose state comprises its position on a finite two-dimensional lattice and the direction of motion. The goal is to find the minimum number of robots and an associated time-invariant memoryless control policy that guarantees that the largest number of states are persistently surveilled without ever visiting a forbidden state. We propose a design method that relies on a finitely parametrized convex program inspired by entropy maximization principles. For clarity of exposition, we focus on simple dynamics and state/control spaces, however the proposed methodology can be extended to more general cases. Numerical examples are provided.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6631148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a method for the design of time-invariant memoryless control policies for robots tasked with persistent surveillance of an area in which there are forbidden regions. We model each robot as a controlled Markov chain whose state comprises its position on a finite two-dimensional lattice and the direction of motion. The goal is to find the minimum number of robots and an associated time-invariant memoryless control policy that guarantees that the largest number of states are persistently surveilled without ever visiting a forbidden state. We propose a design method that relies on a finitely parametrized convex program inspired by entropy maximization principles. For clarity of exposition, we focus on simple dynamics and state/control spaces, however the proposed methodology can be extended to more general cases. Numerical examples are provided.