PoseRBPF: A Rao-Blackwellized Particle Filter for6D Object Pose Estimation

Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia, T. Bretl, D. Fox
{"title":"PoseRBPF: A Rao-Blackwellized Particle Filter for6D Object Pose Estimation","authors":"Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia, T. Bretl, D. Fox","doi":"10.15607/RSS.2019.XV.049","DOIUrl":null,"url":null,"abstract":"Tracking 6D poses of objects from videos provides rich information to a robot in performing different tasks such as manipulation and navigation. In this work, we formulate the 6D object pose tracking problem in the Rao-Blackwellized particle filtering framework, where the 3D rotation and the 3D translation of an object are decoupled. This factorization allows our approach, called PoseRBPF to efficiently estimate the 3D translation of an object along with the full distribution over the 3D rotation. This is achieved by discretizing the rotation space in a fine-grained manner, and training an auto-encoder network to construct a codebook of feature embeddings for the discretized rotations. As a result, PoseRBPF can track objects with arbitrary symmetries while still maintaining adequate posterior distributions. Our approach achieves state-of-the-art results on two 6D pose estimation benchmarks.","PeriodicalId":307591,"journal":{"name":"Robotics: Science and Systems XV","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2019.XV.049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Tracking 6D poses of objects from videos provides rich information to a robot in performing different tasks such as manipulation and navigation. In this work, we formulate the 6D object pose tracking problem in the Rao-Blackwellized particle filtering framework, where the 3D rotation and the 3D translation of an object are decoupled. This factorization allows our approach, called PoseRBPF to efficiently estimate the 3D translation of an object along with the full distribution over the 3D rotation. This is achieved by discretizing the rotation space in a fine-grained manner, and training an auto-encoder network to construct a codebook of feature embeddings for the discretized rotations. As a result, PoseRBPF can track objects with arbitrary symmetries while still maintaining adequate posterior distributions. Our approach achieves state-of-the-art results on two 6D pose estimation benchmarks.
PoseRBPF:一种用于6d目标姿态估计的rao - blackwelzed粒子滤波器
从视频中跟踪物体的6D姿势,为机器人执行不同的任务(如操纵和导航)提供了丰富的信息。在这项工作中,我们在rao - blackwelzed粒子滤波框架中制定了6D物体姿态跟踪问题,其中物体的3D旋转和3D平移是解耦的。这种分解允许我们的方法(称为PoseRBPF)有效地估计对象的3D平移以及3D旋转的完整分布。这是通过以细粒度的方式离散旋转空间,并训练一个自编码器网络来构建离散旋转的特征嵌入码本来实现的。因此,PoseRBPF可以跟踪具有任意对称性的对象,同时仍然保持足够的后检分布。我们的方法在两个6D姿态估计基准上实现了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信