Fake it till you Detect it: Continual Anomaly Detection in Multivariate Time-Series using Generative AI

Gastón García González, P. Casas, Alicia Fernández
{"title":"Fake it till you Detect it: Continual Anomaly Detection in Multivariate Time-Series using Generative AI","authors":"Gastón García González, P. Casas, Alicia Fernández","doi":"10.1109/eurospw59978.2023.00068","DOIUrl":null,"url":null,"abstract":"Anomaly detection in Multivariate Time-Series (MTS) data plays an important role in multiple domains, especially in cybersecurity, for the detection of unknown attacks. DC- VAE is a recent approach we have proposed for anomaly detection in network measurement multivariate data, which uses Variational Auto Encoders (VAEs) and Dilated Convolutional Neural Networks (DCNNs) to model complex and high-dimensional MTS data. However, detecting anomalies using VAEs can result in performance degradation and even catastrophic forgetting when trained on dynamic and evolving network measurements, particularly in the event of concept drifts. We extend DC- VAE to a continual learning setup, leveraging the generative AI properties of the underlying models to deal with continually evolving data. We introduce GenDeX, an approach to Generative AI-based anomaly detection which compresses the patterns extracted from past measurements into a generative model that can synthesize MTS data out of input Gaussian noise, mimicking the characteristics of the MTS data used for training. GenDeX relies on a Deep Generative Replay paradigm to realize continual learning, combining synthesized past MTS measurements with new observations to update the detection model. Using a large-scale, multi-dimensional network monitoring dataset collected from an operational mobile Internet Service Provider (ISP), we showcase the functionality of DC-VAE in the event of concept drifts, and study in-depth its generative characteristics, assessing GenDeX synthetically generated MTS examples. GenDeX enables DC- VAE adapting to continually evolving data, overcoming the limitations of catastrophic forgetting.","PeriodicalId":220415,"journal":{"name":"2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eurospw59978.2023.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anomaly detection in Multivariate Time-Series (MTS) data plays an important role in multiple domains, especially in cybersecurity, for the detection of unknown attacks. DC- VAE is a recent approach we have proposed for anomaly detection in network measurement multivariate data, which uses Variational Auto Encoders (VAEs) and Dilated Convolutional Neural Networks (DCNNs) to model complex and high-dimensional MTS data. However, detecting anomalies using VAEs can result in performance degradation and even catastrophic forgetting when trained on dynamic and evolving network measurements, particularly in the event of concept drifts. We extend DC- VAE to a continual learning setup, leveraging the generative AI properties of the underlying models to deal with continually evolving data. We introduce GenDeX, an approach to Generative AI-based anomaly detection which compresses the patterns extracted from past measurements into a generative model that can synthesize MTS data out of input Gaussian noise, mimicking the characteristics of the MTS data used for training. GenDeX relies on a Deep Generative Replay paradigm to realize continual learning, combining synthesized past MTS measurements with new observations to update the detection model. Using a large-scale, multi-dimensional network monitoring dataset collected from an operational mobile Internet Service Provider (ISP), we showcase the functionality of DC-VAE in the event of concept drifts, and study in-depth its generative characteristics, assessing GenDeX synthetically generated MTS examples. GenDeX enables DC- VAE adapting to continually evolving data, overcoming the limitations of catastrophic forgetting.
假装它直到你发现它:使用生成人工智能在多元时间序列中持续异常检测
多变量时间序列数据异常检测在多个领域,特别是网络安全领域,对未知攻击的检测具有重要作用。DC- VAE是我们最近提出的一种用于网络测量多元数据异常检测的方法,它使用变分自编码器(VAEs)和扩展卷积神经网络(DCNNs)对复杂的高维MTS数据建模。然而,使用VAEs检测异常可能会导致性能下降,甚至在动态和不断发展的网络测量中训练时灾难性的遗忘,特别是在概念漂移的情况下。我们将DC- VAE扩展到持续学习设置,利用底层模型的生成AI属性来处理不断发展的数据。我们介绍了GenDeX,一种基于生成人工智能的异常检测方法,它将从过去的测量中提取的模式压缩成一个生成模型,该模型可以从输入高斯噪声中合成MTS数据,模仿用于训练的MTS数据的特征。GenDeX依靠深度生成重放范式来实现持续学习,将合成的过去MTS测量结果与新的观察结果相结合,以更新检测模型。利用从运营的移动互联网服务提供商(ISP)收集的大规模、多维网络监测数据集,我们展示了DC-VAE在概念漂移情况下的功能,并深入研究了其生成特征,评估了GenDeX综合生成的MTS示例。GenDeX使DC- VAE能够适应不断发展的数据,克服灾难性遗忘的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信