Analysis of gate leakage current in ultra-thin oxide grown by high water vapor pressure thermal oxidation on 4H-SiC

Madhup Shukla, N. Dasgupta
{"title":"Analysis of gate leakage current in ultra-thin oxide grown by high water vapor pressure thermal oxidation on 4H-SiC","authors":"Madhup Shukla, N. Dasgupta","doi":"10.1109/ICEMELEC.2014.7151195","DOIUrl":null,"url":null,"abstract":"Ultra-thin SiO2 layers were grown on n-type 4H-SiC by thermal oxidation in high pressure water vapor ambient. The gate leakage current mechanism at low electric fields and different temperatures was studied. The presence of direct tunneling (DT) and Schottky emission (SE) current mechanisms was observed, with DT dominating at low temperature region of up to 393 K and a combination of DT and SE present at higher temperatures of more than 393 K. The effective barrier height between SiC Fermi level and SiO2 conduction band edge was extracted by fitting the DT model to the experimental gate oxide leakage current density vs. gate oxide electric field curve. It is shown that effective barrier height decreased with increase in temperature and increase in SiC/SiO2 interface state density (Dit), giving rise to a higher DT current.","PeriodicalId":186054,"journal":{"name":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMELEC.2014.7151195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-thin SiO2 layers were grown on n-type 4H-SiC by thermal oxidation in high pressure water vapor ambient. The gate leakage current mechanism at low electric fields and different temperatures was studied. The presence of direct tunneling (DT) and Schottky emission (SE) current mechanisms was observed, with DT dominating at low temperature region of up to 393 K and a combination of DT and SE present at higher temperatures of more than 393 K. The effective barrier height between SiC Fermi level and SiO2 conduction band edge was extracted by fitting the DT model to the experimental gate oxide leakage current density vs. gate oxide electric field curve. It is shown that effective barrier height decreased with increase in temperature and increase in SiC/SiO2 interface state density (Dit), giving rise to a higher DT current.
4H-SiC高水蒸汽压热氧化超薄氧化物栅漏电流分析
在高压水蒸气环境下,采用热氧化法在n型4H-SiC表面生长超薄SiO2层。研究了低电场和不同温度下栅漏电流的机理。发现了直接隧穿(DT)和肖特基发射(SE)电流机制,其中DT在393 K以下低温区占主导地位,DT和SE在393 K以上高温区同时存在。通过将DT模型拟合实验栅氧化物泄漏电流密度与栅氧化物电场曲线,提取了SiC费米能级与SiO2导带边缘之间的有效势垒高度。结果表明,有效势垒高度随着温度的升高和SiC/SiO2界面态密度(Dit)的增大而减小,导致DT电流增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信