Impact of switching activity on the energy minimum voltage for 65 nm sub-VT CMOS

O. Andersson, S. M. Y. Sherazi, J. Rodrigues
{"title":"Impact of switching activity on the energy minimum voltage for 65 nm sub-VT CMOS","authors":"O. Andersson, S. M. Y. Sherazi, J. Rodrigues","doi":"10.1109/NORCHP.2011.6126748","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis on energy dissipation of designs when operated in sub-threshold (sub-VT) regime. Four reference architectures are used to investigate the impact of switching activity μe on energy and energy minimum voltage (EMV). The designs are synthesized in a 65 nm low-leakage CMOS technology with high-threshold voltages cells. A sub-VT energy model is applied to characterize the designs in the sub-VT domain. The simulation results show that with low μe the EMV of a design moves closer to the threshold voltage and visa versa, up to a change of 104mV for the observed architectures. Furthermore a loss in frequency by one order of magnitude is observed. It is also observed that for these architectures operation at a sub-optimal frequency leads to loss in energy dissipation. However, by correct selection of operational clock frequency the energy dissipation is reduced by order of magnitudes.","PeriodicalId":108291,"journal":{"name":"2011 NORCHIP","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 NORCHIP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHP.2011.6126748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents an analysis on energy dissipation of designs when operated in sub-threshold (sub-VT) regime. Four reference architectures are used to investigate the impact of switching activity μe on energy and energy minimum voltage (EMV). The designs are synthesized in a 65 nm low-leakage CMOS technology with high-threshold voltages cells. A sub-VT energy model is applied to characterize the designs in the sub-VT domain. The simulation results show that with low μe the EMV of a design moves closer to the threshold voltage and visa versa, up to a change of 104mV for the observed architectures. Furthermore a loss in frequency by one order of magnitude is observed. It is also observed that for these architectures operation at a sub-optimal frequency leads to loss in energy dissipation. However, by correct selection of operational clock frequency the energy dissipation is reduced by order of magnitudes.
开关活动对65nm亚vt CMOS能量最小电压的影响
本文分析了设计在亚阈值(亚vt)状态下的能量耗散。采用四种参考结构研究了开关活度μe对能量和能量最小电压(EMV)的影响。该设计采用65纳米低漏CMOS技术,具有高阈值电压电池。应用子vt能量模型对子vt域中的设计进行表征。仿真结果表明,在低μe时,设计的EMV更接近阈值电压,反之亦然,所观察到的结构的EMV变化最大可达104mV。此外,还观察到一个数量级的频率损失。还观察到,对于这些体系结构,在次优频率下运行会导致能量耗散损失。然而,通过正确选择工作时钟频率,能量耗散可以降低几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信