{"title":"Impact of switching activity on the energy minimum voltage for 65 nm sub-VT CMOS","authors":"O. Andersson, S. M. Y. Sherazi, J. Rodrigues","doi":"10.1109/NORCHP.2011.6126748","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis on energy dissipation of designs when operated in sub-threshold (sub-VT) regime. Four reference architectures are used to investigate the impact of switching activity μe on energy and energy minimum voltage (EMV). The designs are synthesized in a 65 nm low-leakage CMOS technology with high-threshold voltages cells. A sub-VT energy model is applied to characterize the designs in the sub-VT domain. The simulation results show that with low μe the EMV of a design moves closer to the threshold voltage and visa versa, up to a change of 104mV for the observed architectures. Furthermore a loss in frequency by one order of magnitude is observed. It is also observed that for these architectures operation at a sub-optimal frequency leads to loss in energy dissipation. However, by correct selection of operational clock frequency the energy dissipation is reduced by order of magnitudes.","PeriodicalId":108291,"journal":{"name":"2011 NORCHIP","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 NORCHIP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHP.2011.6126748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents an analysis on energy dissipation of designs when operated in sub-threshold (sub-VT) regime. Four reference architectures are used to investigate the impact of switching activity μe on energy and energy minimum voltage (EMV). The designs are synthesized in a 65 nm low-leakage CMOS technology with high-threshold voltages cells. A sub-VT energy model is applied to characterize the designs in the sub-VT domain. The simulation results show that with low μe the EMV of a design moves closer to the threshold voltage and visa versa, up to a change of 104mV for the observed architectures. Furthermore a loss in frequency by one order of magnitude is observed. It is also observed that for these architectures operation at a sub-optimal frequency leads to loss in energy dissipation. However, by correct selection of operational clock frequency the energy dissipation is reduced by order of magnitudes.