Averist: Algorithmic Verifier for Stability of Linear Hybrid Systems

Miriam García Soto, P. Prabhakar
{"title":"Averist: Algorithmic Verifier for Stability of Linear Hybrid Systems","authors":"Miriam García Soto, P. Prabhakar","doi":"10.1145/3178126.3178154","DOIUrl":null,"url":null,"abstract":"In this paper, we explain the architecture and implementation of the tool Averist that performs stability verification for linear hybrid systems. This tool implements a hybridization method for approximating linear hybrid systems by hybrid systems with polyhedral inclusion dynamics. It also implements a new counterexample guided abstraction refinement framework for analyzing the hybrid systems with polyhedral inclusion dynamics that are generated as a result of the hybridization. Some of the main features of our tool are as follows: (1) our tool is based on algorithmic techniques that do not rely on the computation of Lyapunov functions, (2) it returns a counterexample when it fails to establish stability, (3) it is less prone to numerical instability issues as compared to Lyapunov function based tools.","PeriodicalId":131076,"journal":{"name":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178126.3178154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we explain the architecture and implementation of the tool Averist that performs stability verification for linear hybrid systems. This tool implements a hybridization method for approximating linear hybrid systems by hybrid systems with polyhedral inclusion dynamics. It also implements a new counterexample guided abstraction refinement framework for analyzing the hybrid systems with polyhedral inclusion dynamics that are generated as a result of the hybridization. Some of the main features of our tool are as follows: (1) our tool is based on algorithmic techniques that do not rely on the computation of Lyapunov functions, (2) it returns a counterexample when it fails to establish stability, (3) it is less prone to numerical instability issues as compared to Lyapunov function based tools.
线性混合系统稳定性的Averist算法验证
在本文中,我们解释了对线性混合系统进行稳定性验证的Averist工具的体系结构和实现。该工具实现了用具有多面体包合动力学的杂化系统逼近线性杂化系统的杂化方法。并实现了一种新的反例引导抽象细化框架,用于分析由杂化产生的多面体包涵动力学的杂化系统。我们的工具的一些主要特征如下:(1)我们的工具基于不依赖于Lyapunov函数计算的算法技术,(2)当它无法建立稳定性时,它返回一个反例,(3)与基于Lyapunov函数的工具相比,它不太容易出现数值不稳定问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信