Hybrid input spaces for exemplar-based noise robust speech recognition using coupled dictionaries

Deepak Baby, H. V. hamme
{"title":"Hybrid input spaces for exemplar-based noise robust speech recognition using coupled dictionaries","authors":"Deepak Baby, H. V. hamme","doi":"10.1109/EUSIPCO.2015.7362669","DOIUrl":null,"url":null,"abstract":"Exemplar-based feature enhancement successfully exploits a wide temporal signal context. We extend this technique with hybrid input spaces that are chosen for a more effective separation of speech from background noise. This work investigates the use of two different hybrid input spaces which are formed by incorporating the full-resolution and modulation envelope spectral representations with the Mel features. A coupled output dictionary containing Mel exemplars, which are jointly extracted with the hybrid space exemplars, is used to reconstruct the enhanced Mel features for the ASR back-end. When compared to the system which uses Mel features only as input exemplars, these hybrid input spaces are found to yield improved word error rates on the AURORA-2 database especially with unseen noise cases.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exemplar-based feature enhancement successfully exploits a wide temporal signal context. We extend this technique with hybrid input spaces that are chosen for a more effective separation of speech from background noise. This work investigates the use of two different hybrid input spaces which are formed by incorporating the full-resolution and modulation envelope spectral representations with the Mel features. A coupled output dictionary containing Mel exemplars, which are jointly extracted with the hybrid space exemplars, is used to reconstruct the enhanced Mel features for the ASR back-end. When compared to the system which uses Mel features only as input exemplars, these hybrid input spaces are found to yield improved word error rates on the AURORA-2 database especially with unseen noise cases.
基于样本的噪声鲁棒语音识别的混合输入空间耦合字典
基于样本的特征增强成功地利用了广泛的时间信号上下文。我们将此技术扩展为混合输入空间,选择混合输入空间以更有效地分离语音和背景噪声。这项工作研究了两种不同混合输入空间的使用,这两种混合输入空间是通过将全分辨率和调制包络谱表示与Mel特征相结合而形成的。利用包含Mel样本的耦合输出字典,与混合空间样本联合提取Mel样本,为ASR后端重构增强的Mel特征。与仅使用Mel特征作为输入范例的系统相比,发现这些混合输入空间在AURORA-2数据库上产生更好的单词错误率,特别是在看不见的噪声情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信