{"title":"Robust adaptive control of robot manipulators based on passive theory","authors":"Hongbin Wang, Tie-shan Li, Dejun Mu, Hongrui Wang, Keqing Zhang","doi":"10.1109/WCICA.2004.1343659","DOIUrl":null,"url":null,"abstract":"The robust adaptive control of uncertain robot manipulators was considered based on passivity theory. First, the robot system was converted into an affine nonlinear system through proper torque compensation. Second, the affine nonlinear system was transformed into cascading systems based on differential geometric theory, such that a robust passivity controller was gotten. At last, the robust controller which guarantees that the closed-loop systems were robust, global asymptotic stabilization was attained based on the relationship between the passivity theory and Lyapunov asymptotic stabilization.","PeriodicalId":331407,"journal":{"name":"Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2004.1343659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The robust adaptive control of uncertain robot manipulators was considered based on passivity theory. First, the robot system was converted into an affine nonlinear system through proper torque compensation. Second, the affine nonlinear system was transformed into cascading systems based on differential geometric theory, such that a robust passivity controller was gotten. At last, the robust controller which guarantees that the closed-loop systems were robust, global asymptotic stabilization was attained based on the relationship between the passivity theory and Lyapunov asymptotic stabilization.